Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr12 Structured version   Visualization version   GIF version

Theorem mdetpmtr12 30231
 Description: The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr12.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
mdetmptr12.r (𝜑𝑅 ∈ CRing)
mdetmptr12.n (𝜑𝑁 ∈ Fin)
mdetmptr12.m (𝜑𝑀𝐵)
mdetmptr12.p (𝜑𝑃𝐺)
mdetmptr12.q (𝜑𝑄𝐺)
Assertion
Ref Expression
mdetpmtr12 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑄,𝑖,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr12
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetmptr12.r . . 3 (𝜑𝑅 ∈ CRing)
2 mdetmptr12.n . . 3 (𝜑𝑁 ∈ Fin)
3 mdetmptr12.m . . 3 (𝜑𝑀𝐵)
4 mdetmptr12.p . . 3 (𝜑𝑃𝐺)
5 mdetpmtr.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 mdetpmtr.b . . . 4 𝐵 = (Base‘𝐴)
7 mdetpmtr.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
8 mdetpmtr.g . . . 4 𝐺 = (Base‘(SymGrp‘𝑁))
9 mdetpmtr.s . . . 4 𝑆 = (pmSgn‘𝑁)
10 mdetpmtr.z . . . 4 𝑍 = (ℤRHom‘𝑅)
11 mdetpmtr.t . . . 4 · = (.r𝑅)
12 fveq2 6333 . . . . . 6 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1312oveq1d 6811 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑘)𝑀𝑙) = ((𝑃𝑖)𝑀𝑙))
14 oveq2 6804 . . . . 5 (𝑙 = 𝑗 → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀𝑗))
1513, 14cbvmpt2v 6886 . . . 4 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
165, 6, 7, 8, 9, 10, 11, 15mdetpmtr1 30229 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
171, 2, 3, 4, 16syl22anc 1477 . 2 (𝜑 → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))))
18 eqid 2771 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1943ad2ant1 1127 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑃𝐺)
20 simp2 1131 . . . . . . . 8 ((𝜑𝑘𝑁𝑙𝑁) → 𝑘𝑁)
21 eqid 2771 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2221, 8symgfv 18014 . . . . . . . 8 ((𝑃𝐺𝑘𝑁) → (𝑃𝑘) ∈ 𝑁)
2319, 20, 22syl2anc 573 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → (𝑃𝑘) ∈ 𝑁)
24 simp3 1132 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑙𝑁)
2533ad2ant1 1127 . . . . . . 7 ((𝜑𝑘𝑁𝑙𝑁) → 𝑀𝐵)
265, 18, 6, 23, 24, 25matecld 20449 . . . . . 6 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑃𝑘)𝑀𝑙) ∈ (Base‘𝑅))
275, 18, 6, 2, 1, 26matbas2d 20446 . . . . 5 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵)
28 mdetmptr12.q . . . . 5 (𝜑𝑄𝐺)
29 eqid 2771 . . . . . 6 (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))
305, 6, 7, 8, 9, 10, 11, 29mdetpmtr2 30230 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ ((𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) ∈ 𝐵𝑄𝐺)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
311, 2, 27, 28, 30syl22anc 1477 . . . 4 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
32 simp2 1131 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑖𝑁)
33283ad2ant1 1127 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑄𝐺)
34 simp3 1132 . . . . . . . . . 10 ((𝜑𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3521, 8symgfv 18014 . . . . . . . . . 10 ((𝑄𝐺𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
3633, 34, 35syl2anc 573 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → (𝑄𝑗) ∈ 𝑁)
37 oveq2 6804 . . . . . . . . . 10 (𝑙 = (𝑄𝑗) → ((𝑃𝑖)𝑀𝑙) = ((𝑃𝑖)𝑀(𝑄𝑗)))
38 eqid 2771 . . . . . . . . . 10 (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)) = (𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))
39 ovex 6827 . . . . . . . . . 10 ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ V
4013, 37, 38, 39ovmpt2 6947 . . . . . . . . 9 ((𝑖𝑁 ∧ (𝑄𝑗) ∈ 𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4132, 36, 40syl2anc 573 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)) = ((𝑃𝑖)𝑀(𝑄𝑗)))
4241mpt2eq3dva 6870 . . . . . . 7 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))))
43 mdetpmtr12.e . . . . . . 7 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))
4442, 43syl6reqr 2824 . . . . . 6 (𝜑𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))
4544fveq2d 6337 . . . . 5 (𝜑 → (𝐷𝐸) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗)))))
4645oveq2d 6812 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑄) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑄) · (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ (𝑖(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))(𝑄𝑗))))))
4731, 46eqtr4d 2808 . . 3 (𝜑 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙))) = (((𝑍𝑆)‘𝑄) · (𝐷𝐸)))
4847oveq2d 6812 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ ((𝑃𝑘)𝑀𝑙)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
49 crngring 18766 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
501, 49syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
518, 9, 10zrhcopsgnelbas 20157 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
5250, 2, 4, 51syl3anc 1476 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
538, 9, 10zrhcopsgnelbas 20157 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5450, 2, 28, 53syl3anc 1476 . . . 4 (𝜑 → ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅))
5543ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑖𝑁𝑗𝑁) → 𝑃𝐺)
5621, 8symgfv 18014 . . . . . . . . 9 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
5755, 32, 56syl2anc 573 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
5833ad2ant1 1127 . . . . . . . 8 ((𝜑𝑖𝑁𝑗𝑁) → 𝑀𝐵)
595, 18, 6, 57, 36, 58matecld 20449 . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀(𝑄𝑗)) ∈ (Base‘𝑅))
605, 18, 6, 2, 1, 59matbas2d 20446 . . . . . 6 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗))) ∈ 𝐵)
6143, 60syl5eqel 2854 . . . . 5 (𝜑𝐸𝐵)
627, 5, 6, 18mdetcl 20620 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝐵) → (𝐷𝐸) ∈ (Base‘𝑅))
631, 61, 62syl2anc 573 . . . 4 (𝜑 → (𝐷𝐸) ∈ (Base‘𝑅))
6418, 11ringass 18772 . . . 4 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐷𝐸) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
6550, 52, 54, 63, 64syl13anc 1478 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))))
668, 9cofipsgn 20154 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
672, 4, 66syl2anc 573 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
688, 9cofipsgn 20154 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
692, 28, 68syl2anc 573 . . . . . 6 (𝜑 → ((𝑍𝑆)‘𝑄) = (𝑍‘(𝑆𝑄)))
7067, 69oveq12d 6814 . . . . 5 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
7110zrhrhm 20075 . . . . . . 7 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
7250, 71syl 17 . . . . . 6 (𝜑𝑍 ∈ (ℤring RingHom 𝑅))
73 1z 11614 . . . . . . . 8 1 ∈ ℤ
74 neg1z 11620 . . . . . . . 8 -1 ∈ ℤ
75 prssi 4488 . . . . . . . 8 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
7673, 74, 75mp2an 672 . . . . . . 7 {1, -1} ⊆ ℤ
778, 9psgnran 18142 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
782, 4, 77syl2anc 573 . . . . . . 7 (𝜑 → (𝑆𝑃) ∈ {1, -1})
7976, 78sseldi 3750 . . . . . 6 (𝜑 → (𝑆𝑃) ∈ ℤ)
808, 9psgnran 18142 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑄𝐺) → (𝑆𝑄) ∈ {1, -1})
812, 28, 80syl2anc 573 . . . . . . 7 (𝜑 → (𝑆𝑄) ∈ {1, -1})
8276, 81sseldi 3750 . . . . . 6 (𝜑 → (𝑆𝑄) ∈ ℤ)
83 zringbas 20039 . . . . . . 7 ℤ = (Base‘ℤring)
84 zringmulr 20042 . . . . . . 7 · = (.r‘ℤring)
8583, 84, 11rhmmul 18937 . . . . . 6 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑄) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8672, 79, 82, 85syl3anc 1476 . . . . 5 (𝜑 → (𝑍‘((𝑆𝑃) · (𝑆𝑄))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑄))))
8770, 86eqtr4d 2808 . . . 4 (𝜑 → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) = (𝑍‘((𝑆𝑃) · (𝑆𝑄))))
8887oveq1d 6811 . . 3 (𝜑 → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑄)) · (𝐷𝐸)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
8965, 88eqtr3d 2807 . 2 (𝜑 → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑄) · (𝐷𝐸))) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
9017, 48, 893eqtrd 2809 1 (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ⊆ wss 3723  {cpr 4319   ∘ ccom 5254  ‘cfv 6030  (class class class)co 6796   ↦ cmpt2 6798  Fincfn 8113  1c1 10143   · cmul 10147  -cneg 10473  ℤcz 11584  Basecbs 16064  .rcmulr 16150  SymGrpcsymg 18004  pmSgncpsgn 18116  Ringcrg 18755  CRingccrg 18756   RingHom crh 18922  ℤringzring 20033  ℤRHomczrh 20063   Mat cmat 20430   maDet cmdat 20608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221  ax-mulf 10222 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-xor 1613  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-ot 4326  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-xnn0 11571  df-z 11585  df-dec 11701  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-lsw 13496  df-concat 13497  df-s1 13498  df-substr 13499  df-splice 13500  df-reverse 13501  df-s2 13802  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17799  df-ghm 17866  df-gim 17909  df-cntz 17957  df-oppg 17983  df-symg 18005  df-pmtr 18069  df-psgn 18118  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-subrg 18988  df-sra 19387  df-rgmod 19388  df-cnfld 19962  df-zring 20034  df-zrh 20067  df-dsmm 20293  df-frlm 20308  df-mat 20431  df-mdet 20609 This theorem is referenced by:  madjusmdetlem1  30233
 Copyright terms: Public domain W3C validator