MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib2 Structured version   Visualization version   GIF version

Theorem mdetleib2 20617
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑆,𝑝   𝑈,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑆(𝑥)   · (𝑥)   𝑈(𝑥)   𝑌(𝑥)

Proof of Theorem mdetleib2
Dummy variables 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mdetfval.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
5 mdetfval.y . . . 4 𝑌 = (ℤRHom‘𝑅)
6 mdetfval.s . . . 4 𝑆 = (pmSgn‘𝑁)
7 mdetfval.t . . . 4 · = (.r𝑅)
8 mdetfval.u . . . 4 𝑈 = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 20616 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
109adantl 473 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
11 eqid 2761 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 crngring 18779 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 ringcmn 18802 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1412, 13syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
1514adantr 472 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
162, 3matrcl 20441 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1716adantl 473 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1817simpld 477 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
19 eqid 2761 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2019, 4symgbasfi 18027 . . . 4 (𝑁 ∈ Fin → 𝑃 ∈ Fin)
2118, 20syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Fin)
2212ad2antrr 764 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑅 ∈ Ring)
2312adantr 472 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
245, 6coeq12i 5442 . . . . . . . . 9 (𝑌𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))
25 zrhpsgnmhm 20153 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2624, 25syl5eqel 2844 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2723, 18, 26syl2anc 696 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
28 eqid 2761 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2928, 11mgpbas 18716 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
304, 29mhmf 17562 . . . . . . 7 ((𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3127, 30syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3231ffvelrnda 6524 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅))
338, 11mgpbas 18716 . . . . . 6 (Base‘𝑅) = (Base‘𝑈)
348crngmgp 18776 . . . . . . 7 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
3534ad2antrr 764 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑈 ∈ CMnd)
3618adantr 472 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑁 ∈ Fin)
37 simpr 479 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
382, 11, 3matbas2i 20451 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
39 elmapi 8048 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4037, 38, 393syl 18 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4140ad2antrr 764 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4219, 4symgbasf1o 18024 . . . . . . . . . . 11 (𝑞𝑃𝑞:𝑁1-1-onto𝑁)
4342adantl 473 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁1-1-onto𝑁)
44 f1of 6300 . . . . . . . . . 10 (𝑞:𝑁1-1-onto𝑁𝑞:𝑁𝑁)
4543, 44syl 17 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁𝑁)
4645ffvelrnda 6524 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → (𝑞𝑦) ∈ 𝑁)
47 simpr 479 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
4841, 46, 47fovrnd 6973 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4948ralrimiva 3105 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ∀𝑦𝑁 ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
5033, 35, 36, 49gsummptcl 18587 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅))
5111, 7ringcl 18782 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5222, 32, 50, 51syl3anc 1477 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5352ralrimiva 3105 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑞𝑃 (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
54 eqid 2761 . . 3 (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))
55 eqid 2761 . . . 4 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
5619symggrp 18041 . . . . 5 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
5718, 56syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
584, 55, 57grpinvf1o 17707 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃)
5911, 15, 21, 53, 54, 58gsummptfif1o 18588 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))))
60 f1of 6300 . . . . . . 7 ((invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃 → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6158, 60syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6261ffvelrnda 6524 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃)
6361feqmptd 6413 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)) = (𝑝𝑃 ↦ ((invg‘(SymGrp‘𝑁))‘𝑝)))
64 eqidd 2762 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))))
65 fveq2 6354 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌𝑆)‘𝑞) = ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)))
66 fveq1 6353 . . . . . . . . 9 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦))
6766oveq1d 6830 . . . . . . . 8 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
6867mpteq2dv 4898 . . . . . . 7 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
6968oveq2d 6831 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))
7065, 69oveq12d 6833 . . . . 5 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))
7162, 63, 64, 70fmptco 6561 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))))
7219, 4, 55symginv 18043 . . . . . . . . 9 (𝑝𝑃 → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7372adantl 473 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7473fveq2d 6358 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
7512ad2antrr 764 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑅 ∈ Ring)
7618adantr 472 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑁 ∈ Fin)
77 simpr 479 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝𝑃)
784, 5, 6zrhpsgninv 20154 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7975, 76, 77, 78syl3anc 1477 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
8074, 79eqtrd 2795 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
81 eqid 2761 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
8234ad2antrr 764 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑈 ∈ CMnd)
8340ad2antrr 764 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8472ad2antlr 765 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
8584fveq1d 6356 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (𝑝𝑦))
8619, 4symgbasf1o 18024 . . . . . . . . . . . . . . 15 (𝑝𝑃𝑝:𝑁1-1-onto𝑁)
8786adantl 473 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁1-1-onto𝑁)
88 f1ocnv 6312 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁1-1-onto𝑁)
89 f1of 6300 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
9087, 88, 893syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
9190ffvelrnda 6524 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (𝑝𝑦) ∈ 𝑁)
9285, 91eqeltrd 2840 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁)
93 simpr 479 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
9483, 92, 93fovrnd 6973 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅))
9594, 33syl6eleq 2850 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
9695ralrimiva 3105 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ∀𝑦𝑁 ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
97 eqid 2761 . . . . . . . 8 (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
9881, 82, 76, 96, 97, 87gsummptfif1o 18588 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)))
99 f1of 6300 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
10087, 99syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
101100ffvelrnda 6524 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
102100feqmptd 6413 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝 = (𝑥𝑁 ↦ (𝑝𝑥)))
103 eqidd 2762 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
104 fveq2 6354 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)))
105 id 22 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → 𝑦 = (𝑝𝑥))
106104, 105oveq12d 6833 . . . . . . . . . 10 (𝑦 = (𝑝𝑥) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)))
107101, 102, 103, 106fmptco 6561 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))))
10872ad2antlr 765 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
109108fveq1d 6356 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = (𝑝‘(𝑝𝑥)))
110 f1ocnvfv1 6697 . . . . . . . . . . . . 13 ((𝑝:𝑁1-1-onto𝑁𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
11187, 110sylan 489 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
112109, 111eqtrd 2795 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = 𝑥)
113112oveq1d 6830 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)) = (𝑥𝑀(𝑝𝑥)))
114113mpteq2dva 4897 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
115107, 114eqtrd 2795 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
116115oveq2d 6831 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11798, 116eqtrd 2795 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11880, 117oveq12d 6833 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))
119118mpteq2dva 4897 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
12071, 119eqtrd 2795 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
121120oveq2d 6831 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
12210, 59, 1213eqtrd 2799 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  Vcvv 3341  cmpt 4882   × cxp 5265  ccnv 5266  ccom 5271  wf 6046  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  𝑚 cmap 8026  Fincfn 8124  Basecbs 16080  .rcmulr 16165   Σg cgsu 16324   MndHom cmhm 17555  Grpcgrp 17644  invgcminusg 17645  SymGrpcsymg 18018  pmSgncpsgn 18130  CMndccmn 18414  mulGrpcmgp 18710  Ringcrg 18768  CRingccrg 18769  ℤRHomczrh 20071   Mat cmat 20436   maDet cmdat 20613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-ot 4331  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-xnn0 11577  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-splice 13511  df-reverse 13512  df-s2 13814  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-mulg 17763  df-subg 17813  df-ghm 17880  df-gim 17923  df-cntz 17971  df-oppg 17997  df-symg 18019  df-pmtr 18083  df-psgn 18132  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-rnghom 18938  df-drng 18972  df-subrg 19001  df-sra 19395  df-rgmod 19396  df-cnfld 19970  df-zring 20042  df-zrh 20075  df-dsmm 20299  df-frlm 20314  df-mat 20437  df-mdet 20614
This theorem is referenced by:  mdetrlin  20631  mdetrsca  20632  mdettpos  20640  smadiadet  20699
  Copyright terms: Public domain W3C validator