MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet0pr Structured version   Visualization version   GIF version

Theorem mdet0pr 20446
Description: The determinant for 0-dimensional matrices is a singleton containing an ordered pair with the singleton containing the empty set as first component, and the singleton containing the 1 element of the underlying ring as second component. (Contributed by AV, 28-Feb-2019.)
Assertion
Ref Expression
mdet0pr (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})

Proof of Theorem mdet0pr
Dummy variables 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 (∅ maDet 𝑅) = (∅ maDet 𝑅)
2 eqid 2651 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
3 eqid 2651 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
4 eqid 2651 . . . 4 (Base‘(SymGrp‘∅)) = (Base‘(SymGrp‘∅))
5 eqid 2651 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2651 . . . 4 (pmSgn‘∅) = (pmSgn‘∅)
7 eqid 2651 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2651 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetfval 20440 . . 3 (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))))
109a1i 11 . 2 (𝑅 ∈ Ring → (∅ maDet 𝑅) = (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
11 mat0dimbas0 20320 . . 3 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
1211mpteq1d 4771 . 2 (𝑅 ∈ Ring → (𝑚 ∈ (Base‘(∅ Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
13 0ex 4823 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ∈ V)
15 ovex 6718 . . . 4 (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V
16 oveq 6696 . . . . . . . . . 10 (𝑚 = ∅ → ((𝑝𝑥)𝑚𝑥) = ((𝑝𝑥)∅𝑥))
1716mpteq2dv 4778 . . . . . . . . 9 (𝑚 = ∅ → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))
1817oveq2d 6706 . . . . . . . 8 (𝑚 = ∅ → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))
1918oveq2d 6706 . . . . . . 7 (𝑚 = ∅ → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))
2019mpteq2dv 4778 . . . . . 6 (𝑚 = ∅ → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))
2120oveq2d 6706 . . . . 5 (𝑚 = ∅ → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))))
2221fmptsng 6475 . . . 4 ((∅ ∈ V ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) ∈ V) → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
2314, 15, 22sylancl 695 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))))
24 mpt0 6059 . . . . . . . . . . . 12 (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅
2524a1i 11 . . . . . . . . . . 11 (𝑅 ∈ Ring → (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)) = ∅)
2625oveq2d 6706 . . . . . . . . . 10 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = ((mulGrp‘𝑅) Σg ∅))
27 eqid 2651 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
2827gsum0 17325 . . . . . . . . . 10 ((mulGrp‘𝑅) Σg ∅) = (0g‘(mulGrp‘𝑅))
2926, 28syl6eq 2701 . . . . . . . . 9 (𝑅 ∈ Ring → ((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))) = (0g‘(mulGrp‘𝑅)))
3029oveq2d 6706 . . . . . . . 8 (𝑅 ∈ Ring → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))
3130mpteq2dv 4778 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))))
3231oveq2d 6706 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))))
33 eqid 2651 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
348, 33ringidval 18549 . . . . . . . . . . . 12 (1r𝑅) = (0g‘(mulGrp‘𝑅))
3534eqcomi 2660 . . . . . . . . . . 11 (0g‘(mulGrp‘𝑅)) = (1r𝑅)
3635a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
3736oveq2d 6706 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)))
38 0fin 8229 . . . . . . . . . . 11 ∅ ∈ Fin
394, 6, 5zrhcopsgnelbas 19989 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
4038, 39mp3an2 1452 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅))
41 eqid 2651 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4241, 7, 33ringridm 18618 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4340, 42syldan 486 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(1r𝑅)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4437, 43eqtrd 2685 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))) = (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))
4544mpteq2dva 4777 . . . . . . 7 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅)))) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)))
4645oveq2d 6706 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)(0g‘(mulGrp‘𝑅))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))))
47 simpl 472 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑅 ∈ Ring)
4838a1i 11 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ∅ ∈ Fin)
49 simpr 476 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (Base‘(SymGrp‘∅)))
50 elsni 4227 . . . . . . . . . . . . . 14 (𝑝 ∈ {∅} → 𝑝 = ∅)
51 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = ((pmSgn‘∅)‘∅))
52 psgn0fv0 17977 . . . . . . . . . . . . . . 15 ((pmSgn‘∅)‘∅) = 1
5351, 52syl6eq 2701 . . . . . . . . . . . . . 14 (𝑝 = ∅ → ((pmSgn‘∅)‘𝑝) = 1)
5450, 53syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ {∅} → ((pmSgn‘∅)‘𝑝) = 1)
55 symgbas0 17860 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
5654, 55eleq2s 2748 . . . . . . . . . . . 12 (𝑝 ∈ (Base‘(SymGrp‘∅)) → ((pmSgn‘∅)‘𝑝) = 1)
5756adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → ((pmSgn‘∅)‘𝑝) = 1)
58 eqid 2651 . . . . . . . . . . . . 13 (SymGrp‘∅) = (SymGrp‘∅)
5958, 4, 6psgnevpmb 19981 . . . . . . . . . . . 12 (∅ ∈ Fin → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6048, 59syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (𝑝 ∈ (pmEven‘∅) ↔ (𝑝 ∈ (Base‘(SymGrp‘∅)) ∧ ((pmSgn‘∅)‘𝑝) = 1)))
6149, 57, 60mpbir2and 977 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → 𝑝 ∈ (pmEven‘∅))
625, 6, 33zrhpsgnevpm 19985 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ (pmEven‘∅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6347, 48, 61, 62syl3anc 1366 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(SymGrp‘∅))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝) = (1r𝑅))
6463mpteq2dva 4777 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)) = (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)))
6564oveq2d 6706 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))))
6655a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘(SymGrp‘∅)) = {∅})
6766mpteq1d 4771 . . . . . . . 8 (𝑅 ∈ Ring → (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅)) = (𝑝 ∈ {∅} ↦ (1r𝑅)))
6867oveq2d 6706 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (1r𝑅))) = (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))))
69 ringmnd 18602 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
7041, 33ringidcl 18614 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
71 eqidd 2652 . . . . . . . . 9 (𝑝 = ∅ → (1r𝑅) = (1r𝑅))
7241, 71gsumsn 18400 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ∅ ∈ V ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7369, 14, 70, 72syl3anc 1366 . . . . . . 7 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ {∅} ↦ (1r𝑅))) = (1r𝑅))
7465, 68, 733eqtrd 2689 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ (((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝))) = (1r𝑅))
7532, 46, 743eqtrd 2689 . . . . 5 (𝑅 ∈ Ring → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥)))))) = (1r𝑅))
7675opeq2d 4440 . . . 4 (𝑅 ∈ Ring → ⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩ = ⟨∅, (1r𝑅)⟩)
7776sneqd 4222 . . 3 (𝑅 ∈ Ring → {⟨∅, (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)∅𝑥))))))⟩} = {⟨∅, (1r𝑅)⟩})
7823, 77eqtr3d 2687 . 2 (𝑅 ∈ Ring → (𝑚 ∈ {∅} ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘∅)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘∅))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ ∅ ↦ ((𝑝𝑥)𝑚𝑥))))))) = {⟨∅, (1r𝑅)⟩})
7910, 12, 783eqtrd 2689 1 (𝑅 ∈ Ring → (∅ maDet 𝑅) = {⟨∅, (1r𝑅)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  {csn 4210  cop 4216  cmpt 4762  ccom 5147  cfv 5926  (class class class)co 6690  Fincfn 7997  1c1 9975  Basecbs 15904  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  SymGrpcsymg 17843  pmSgncpsgn 17955  pmEvencevpm 17956  mulGrpcmgp 18535  1rcur 18547  Ringcrg 18593  ℤRHomczrh 19896   Mat cmat 20261   maDet cmdat 20438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957  df-evpm 17958  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-sra 19220  df-rgmod 19221  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-dsmm 20124  df-frlm 20139  df-mat 20262  df-mdet 20439
This theorem is referenced by:  mdet0f1o  20447  mdet0fv0  20448  chpmat0d  20687
  Copyright terms: Public domain W3C validator