Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvsca Structured version   Visualization version   GIF version

Theorem mdegvsca 24055
 Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvsca.b 𝐵 = (Base‘𝑌)
mdegvsca.e 𝐸 = (RLReg‘𝑅)
mdegvsca.p · = ( ·𝑠𝑌)
mdegvsca.f (𝜑𝐹𝐸)
mdegvsca.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvsca (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))

Proof of Theorem mdegvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvsca.p . . . . . . 7 · = ( ·𝑠𝑌)
3 eqid 2770 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 mdegvsca.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2770 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2770 . . . . . . 7 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
7 mdegvsca.e . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
87, 3rrgss 19506 . . . . . . . 8 𝐸 ⊆ (Base‘𝑅)
9 mdegvsca.f . . . . . . . 8 (𝜑𝐹𝐸)
108, 9sseldi 3748 . . . . . . 7 (𝜑𝐹 ∈ (Base‘𝑅))
11 mdegvsca.g . . . . . . 7 (𝜑𝐺𝐵)
121, 2, 3, 4, 5, 6, 10, 11mplvsca 19661 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = (({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺))
1312oveq1d 6807 . . . . 5 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = ((({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺) supp (0g𝑅)))
14 eqid 2770 . . . . . 6 (0g𝑅) = (0g𝑅)
15 ovex 6822 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1615rabex 4943 . . . . . . 7 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
18 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
191, 3, 4, 6, 11mplelf 19647 . . . . . 6 (𝜑𝐺:{𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
207, 3, 5, 14, 17, 18, 9, 19rrgsupp 19505 . . . . 5 (𝜑 → ((({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {𝐹}) ∘𝑓 (.r𝑅)𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2113, 20eqtrd 2804 . . . 4 (𝜑 → ((𝐹 · 𝐺) supp (0g𝑅)) = (𝐺 supp (0g𝑅)))
2221imaeq2d 5607 . . 3 (𝜑 → ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))))
2322supeq1d 8507 . 2 (𝜑 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
24 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
251mpllmod 19665 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2624, 18, 25syl2anc 565 . . . 4 (𝜑𝑌 ∈ LMod)
271, 24, 18mplsca 19659 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑌))
2827fveq2d 6336 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
2910, 28eleqtrd 2851 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
30 eqid 2770 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
31 eqid 2770 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
324, 30, 2, 31lmodvscl 19089 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3326, 29, 11, 32syl3anc 1475 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
34 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
35 eqid 2770 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
3634, 1, 4, 14, 6, 35mdegval 24042 . . 3 ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3733, 36syl 17 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ((𝐹 · 𝐺) supp (0g𝑅))), ℝ*, < ))
3834, 1, 4, 14, 6, 35mdegval 24042 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
3911, 38syl 17 . 2 (𝜑 → (𝐷𝐺) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐺 supp (0g𝑅))), ℝ*, < ))
4023, 37, 393eqtr4d 2814 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2144  {crab 3064  Vcvv 3349  {csn 4314   ↦ cmpt 4861   × cxp 5247  ◡ccnv 5248   “ cima 5252  ‘cfv 6031  (class class class)co 6792   ∘𝑓 cof 7041   supp csupp 7445   ↑𝑚 cmap 8008  Fincfn 8108  supcsup 8501  ℝ*cxr 10274   < clt 10275  ℕcn 11221  ℕ0cn0 11493  Basecbs 16063  .rcmulr 16149  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307   Σg cgsu 16308  Ringcrg 18754  LModclmod 19072  RLRegcrlreg 19493   mPoly cmpl 19567  ℂfldccnfld 19960   mDeg cmdg 24032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-tset 16167  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-mgp 18697  df-ur 18709  df-ring 18756  df-lmod 19074  df-lss 19142  df-rlreg 19497  df-psr 19570  df-mpl 19572  df-mdeg 24034 This theorem is referenced by:  deg1vsca  24084
 Copyright terms: Public domain W3C validator