![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegval | Structured version Visualization version GIF version |
Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
mdegval.z | ⊢ 0 = (0g‘𝑅) |
mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
Ref | Expression |
---|---|
mdegval | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6803 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 supp 0 ) = (𝐹 supp 0 )) | |
2 | 1 | imaeq2d 5606 | . . 3 ⊢ (𝑓 = 𝐹 → (𝐻 “ (𝑓 supp 0 )) = (𝐻 “ (𝐹 supp 0 ))) |
3 | 2 | supeq1d 8512 | . 2 ⊢ (𝑓 = 𝐹 → sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
4 | mdegval.d | . . 3 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
5 | mdegval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
6 | mdegval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
7 | mdegval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
8 | mdegval.a | . . 3 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
9 | mdegval.h | . . 3 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
10 | 4, 5, 6, 7, 8, 9 | mdegfval 24042 | . 2 ⊢ 𝐷 = (𝑓 ∈ 𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) |
11 | xrltso 12179 | . . 3 ⊢ < Or ℝ* | |
12 | 11 | supex 8529 | . 2 ⊢ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ V |
13 | 3, 10, 12 | fvmpt 6426 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {crab 3065 ↦ cmpt 4864 ◡ccnv 5249 “ cima 5253 ‘cfv 6030 (class class class)co 6796 supp csupp 7450 ↑𝑚 cmap 8013 Fincfn 8113 supcsup 8506 ℝ*cxr 10279 < clt 10280 ℕcn 11226 ℕ0cn0 11499 Basecbs 16064 0gc0g 16308 Σg cgsu 16309 mPoly cmpl 19568 ℂfldccnfld 19961 mDeg cmdg 24033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-psr 19571 df-mpl 19573 df-mdeg 24035 |
This theorem is referenced by: mdegleb 24044 mdeglt 24045 mdegldg 24046 mdegxrcl 24047 mdegcl 24049 mdeg0 24050 mdegvsca 24056 deg1val 24076 |
Copyright terms: Public domain | W3C validator |