MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegpropd Structured version   Visualization version   GIF version

Theorem mdegpropd 24064
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegpropd.b1 (𝜑𝐵 = (Base‘𝑅))
mdegpropd.b2 (𝜑𝐵 = (Base‘𝑆))
mdegpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
mdegpropd (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem mdegpropd
Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegpropd.b1 . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 mdegpropd.b2 . . . 4 (𝜑𝐵 = (Base‘𝑆))
3 mdegpropd.p . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
41, 2, 3mplbaspropd 19822 . . 3 (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
51, 2, 3grpidpropd 17469 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑆))
65oveq2d 6809 . . . . 5 (𝜑 → (𝑐 supp (0g𝑅)) = (𝑐 supp (0g𝑆)))
76imaeq2d 5607 . . . 4 (𝜑 → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))) = ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))))
87supeq1d 8508 . . 3 (𝜑 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < ) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < ))
94, 8mpteq12dv 4867 . 2 (𝜑 → (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < )) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < )))
10 eqid 2771 . . 3 (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑅)
11 eqid 2771 . . 3 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
12 eqid 2771 . . 3 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
13 eqid 2771 . . 3 (0g𝑅) = (0g𝑅)
14 eqid 2771 . . 3 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
15 eqid 2771 . . 3 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
1610, 11, 12, 13, 14, 15mdegfval 24042 . 2 (𝐼 mDeg 𝑅) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑅))), ℝ*, < ))
17 eqid 2771 . . 3 (𝐼 mDeg 𝑆) = (𝐼 mDeg 𝑆)
18 eqid 2771 . . 3 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
19 eqid 2771 . . 3 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
20 eqid 2771 . . 3 (0g𝑆) = (0g𝑆)
2117, 18, 19, 20, 14, 15mdegfval 24042 . 2 (𝐼 mDeg 𝑆) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g𝑆))), ℝ*, < ))
229, 16, 213eqtr4g 2830 1 (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {crab 3065  cmpt 4863  ccnv 5248  cima 5252  cfv 6031  (class class class)co 6793   supp csupp 7446  𝑚 cmap 8009  Fincfn 8109  supcsup 8502  *cxr 10275   < clt 10276  cn 11222  0cn0 11494  Basecbs 16064  +gcplusg 16149  0gc0g 16308   Σg cgsu 16309   mPoly cmpl 19568  fldccnfld 19961   mDeg cmdg 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-0g 16310  df-psr 19571  df-mpl 19573  df-mdeg 24035
This theorem is referenced by:  deg1propd  24066
  Copyright terms: Public domain W3C validator