MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Structured version   Visualization version   GIF version

Theorem mdegle0 23882
Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegle0.b 𝐵 = (Base‘𝑌)
mdegle0.a 𝐴 = (algSc‘𝑌)
mdegle0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mdegle0 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))

Proof of Theorem mdegle0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3 (𝜑𝐹𝐵)
2 0xr 10124 . . 3 0 ∈ ℝ*
3 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
4 mdegaddle.y . . . 4 𝑌 = (𝐼 mPoly 𝑅)
5 mdegle0.b . . . 4 𝐵 = (Base‘𝑌)
6 eqid 2651 . . . 4 (0g𝑅) = (0g𝑅)
7 eqid 2651 . . . 4 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
8 eqid 2651 . . . 4 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
93, 4, 5, 6, 7, 8mdegleb 23869 . . 3 ((𝐹𝐵 ∧ 0 ∈ ℝ*) → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
101, 2, 9sylancl 695 . 2 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
11 mdegaddle.i . . . . . . . . . 10 (𝜑𝐼𝑉)
127, 8tdeglem1 23863 . . . . . . . . . 10 (𝐼𝑉 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1413ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0)
15 nn0re 11339 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ)
16 nn0ge0 11356 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
1715, 16jca 553 . . . . . . . 8 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
18 ne0gt0 10180 . . . . . . . 8 ((((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
1914, 17, 183syl 18 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
207, 8tdeglem4 23865 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2111, 20sylan 487 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2221necon3abid 2859 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ ¬ 𝑥 = (𝐼 × {0})))
2319, 22bitr3d 270 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ↔ ¬ 𝑥 = (𝐼 × {0})))
2423imbi1d 330 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
25 eqeq2 2662 . . . . . . . 8 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2625bibi1d 332 . . . . . . 7 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
27 eqeq2 2662 . . . . . . . 8 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (0g𝑅) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2827bibi1d 332 . . . . . . 7 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
29 fveq2 6229 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (𝐹‘(𝐼 × {0})))
30 pm2.24 121 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))
3129, 302thd 255 . . . . . . . 8 (𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3231adantl 481 . . . . . . 7 ((𝜑𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
33 biimt 349 . . . . . . . 8 𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3433adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3526, 28, 32, 34ifbothda 4156 . . . . . 6 (𝜑 → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3635adantr 480 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3724, 36bitr4d 271 . . . 4 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
3837ralbidva 3014 . . 3 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
39 eqid 2651 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
404, 39, 5, 7, 1mplelf 19481 . . . . . 6 (𝜑𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4140feqmptd 6288 . . . . 5 (𝜑𝐹 = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)))
42 mdegle0.a . . . . . 6 𝐴 = (algSc‘𝑌)
43 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
447psrbag0 19542 . . . . . . . 8 (𝐼𝑉 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4511, 44syl 17 . . . . . . 7 (𝜑 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4640, 45ffvelrnd 6400 . . . . . 6 (𝜑 → (𝐹‘(𝐼 × {0})) ∈ (Base‘𝑅))
474, 7, 6, 39, 42, 11, 43, 46mplascl 19544 . . . . 5 (𝜑 → (𝐴‘(𝐹‘(𝐼 × {0}))) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
4841, 47eqeq12d 2666 . . . 4 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)))))
49 fvex 6239 . . . . . 6 (𝐹𝑥) ∈ V
5049rgenw 2953 . . . . 5 𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V
51 mpteqb 6338 . . . . 5 (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V → ((𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5250, 51mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5348, 52bitrd 268 . . 3 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5438, 53bitr4d 271 . 2 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
5510, 54bitrd 268 1 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  Vcvv 3231  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cr 9973  0cc0 9974  *cxr 10111   < clt 10112  cle 10113  cn 11058  0cn0 11330  Basecbs 15904  0gc0g 16147   Σg cgsu 16148  Ringcrg 18593  algSccascl 19359   mPoly cmpl 19401  fldccnfld 19794   mDeg cmdg 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-ascl 19362  df-psr 19404  df-mpl 19406  df-cnfld 19795  df-mdeg 23860
This theorem is referenced by:  deg1le0  23916
  Copyright terms: Public domain W3C validator