Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeg0 Structured version   Visualization version   GIF version

Theorem mdeg0 24050
 Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdeg0.d 𝐷 = (𝐼 mDeg 𝑅)
mdeg0.p 𝑃 = (𝐼 mPoly 𝑅)
mdeg0.z 0 = (0g𝑃)
Assertion
Ref Expression
mdeg0 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)

Proof of Theorem mdeg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringgrp 18760 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 mdeg0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
32mplgrp 19665 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
41, 3sylan2 580 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑃 ∈ Grp)
5 eqid 2771 . . . 4 (Base‘𝑃) = (Base‘𝑃)
6 mdeg0.z . . . 4 0 = (0g𝑃)
75, 6grpidcl 17658 . . 3 (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃))
8 mdeg0.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
9 eqid 2771 . . . 4 (0g𝑅) = (0g𝑅)
10 eqid 2771 . . . 4 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
11 eqid 2771 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
128, 2, 5, 9, 10, 11mdegval 24043 . . 3 ( 0 ∈ (Base‘𝑃) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
134, 7, 123syl 18 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
14 simpl 468 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝐼𝑉)
151adantl 467 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Grp)
162, 10, 9, 6, 14, 15mpl0 19656 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}))
17 fvex 6342 . . . . . . . . . 10 (0g𝑅) ∈ V
18 fnconstg 6233 . . . . . . . . . 10 ((0g𝑅) ∈ V → ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
1917, 18mp1i 13 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
2016fneq1d 6121 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}))
2119, 20mpbird 247 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
22 ovex 6823 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
2322rabex 4946 . . . . . . . . 9 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
2517a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → (0g𝑅) ∈ V)
26 fnsuppeq0 7475 . . . . . . . 8 (( 0 Fn {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2721, 24, 25, 26syl3anc 1476 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2816, 27mpbird 247 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 supp (0g𝑅)) = ∅)
2928imaeq2d 5607 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅))
30 ima0 5622 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅
3129, 30syl6eq 2821 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ∅)
3231supeq1d 8508 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
33 xrsup0 12358 . . 3 sup(∅, ℝ*, < ) = -∞
3432, 33syl6eq 2821 . 2 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = -∞)
3513, 34eqtrd 2805 1 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351  ∅c0 4063  {csn 4316   ↦ cmpt 4863   × cxp 5247  ◡ccnv 5248   “ cima 5252   Fn wfn 6026  ‘cfv 6031  (class class class)co 6793   supp csupp 7446   ↑𝑚 cmap 8009  Fincfn 8109  supcsup 8502  -∞cmnf 10274  ℝ*cxr 10275   < clt 10276  ℕcn 11222  ℕ0cn0 11494  Basecbs 16064  0gc0g 16308   Σg cgsu 16309  Grpcgrp 17630  Ringcrg 18755   mPoly cmpl 19568  ℂfldccnfld 19961   mDeg cmdg 24033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-subg 17799  df-ring 18757  df-psr 19571  df-mpl 19573  df-mdeg 24035 This theorem is referenced by:  deg1z  24067
 Copyright terms: Public domain W3C validator