![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdeg0 | Structured version Visualization version GIF version |
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdeg0.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
mdeg0 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18760 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | mdeg0.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | 2 | mplgrp 19665 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
4 | 1, 3 | sylan2 580 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Grp) |
5 | eqid 2771 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
6 | mdeg0.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
7 | 5, 6 | grpidcl 17658 | . . 3 ⊢ (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃)) |
8 | mdeg0.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
9 | eqid 2771 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
10 | eqid 2771 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
11 | eqid 2771 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
12 | 8, 2, 5, 9, 10, 11 | mdegval 24043 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
13 | 4, 7, 12 | 3syl 18 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
14 | simpl 468 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) | |
15 | 1 | adantl 467 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
16 | 2, 10, 9, 6, 14, 15 | mpl0 19656 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
17 | fvex 6342 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
18 | fnconstg 6233 | . . . . . . . . . 10 ⊢ ((0g‘𝑅) ∈ V → ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) | |
19 | 17, 18 | mp1i 13 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
20 | 16 | fneq1d 6121 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin})) |
21 | 19, 20 | mpbird 247 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
22 | ovex 6823 | . . . . . . . . . 10 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
23 | 22 | rabex 4946 | . . . . . . . . 9 ⊢ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
25 | 17 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (0g‘𝑅) ∈ V) |
26 | fnsuppeq0 7475 | . . . . . . . 8 ⊢ (( 0 Fn {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g‘𝑅) ∈ V) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) | |
27 | 21, 24, 25, 26 | syl3anc 1476 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) |
28 | 16, 27 | mpbird 247 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 supp (0g‘𝑅)) = ∅) |
29 | 28 | imaeq2d 5607 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅)) |
30 | ima0 5622 | . . . . 5 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅ | |
31 | 29, 30 | syl6eq 2821 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ∅) |
32 | 31 | supeq1d 8508 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = sup(∅, ℝ*, < )) |
33 | xrsup0 12358 | . . 3 ⊢ sup(∅, ℝ*, < ) = -∞ | |
34 | 32, 33 | syl6eq 2821 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = -∞) |
35 | 13, 34 | eqtrd 2805 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ∅c0 4063 {csn 4316 ↦ cmpt 4863 × cxp 5247 ◡ccnv 5248 “ cima 5252 Fn wfn 6026 ‘cfv 6031 (class class class)co 6793 supp csupp 7446 ↑𝑚 cmap 8009 Fincfn 8109 supcsup 8502 -∞cmnf 10274 ℝ*cxr 10275 < clt 10276 ℕcn 11222 ℕ0cn0 11494 Basecbs 16064 0gc0g 16308 Σg cgsu 16309 Grpcgrp 17630 Ringcrg 18755 mPoly cmpl 19568 ℂfldccnfld 19961 mDeg cmdg 24033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-subg 17799 df-ring 18757 df-psr 19571 df-mpl 19573 df-mdeg 24035 |
This theorem is referenced by: deg1z 24067 |
Copyright terms: Public domain | W3C validator |