HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Structured version   Visualization version   GIF version

Theorem mddmd2 29056
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem mddmd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4627 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑀 𝑥𝐴 𝑀 𝑦))
21cbvralv 3163 . . . 4 (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C 𝐴 𝑀 𝑦)
3 mdbr 29041 . . . . . 6 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)))))
4 incom 3789 . . . . . . . . . . . 12 ((𝐴 𝑥) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥))
5 chjcom 28253 . . . . . . . . . . . . 13 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
65ineq1d 3797 . . . . . . . . . . . 12 ((𝐴C𝑥C ) → ((𝐴 𝑥) ∩ 𝑦) = ((𝑥 𝐴) ∩ 𝑦))
74, 6syl5reqr 2670 . . . . . . . . . . 11 ((𝐴C𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
87adantlr 750 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
9 incom 3789 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
109oveq1i 6625 . . . . . . . . . . 11 ((𝐴𝑦) ∨ 𝑥) = ((𝑦𝐴) ∨ 𝑥)
11 chincl 28246 . . . . . . . . . . . 12 ((𝐴C𝑦C ) → (𝐴𝑦) ∈ C )
12 chjcom 28253 . . . . . . . . . . . 12 (((𝐴𝑦) ∈ C𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
1311, 12sylan 488 . . . . . . . . . . 11 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
1410, 13syl5reqr 2670 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → (𝑥 (𝐴𝑦)) = ((𝑦𝐴) ∨ 𝑥))
158, 14eqeq12d 2636 . . . . . . . . 9 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ (𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥)))
16 eqcom 2628 . . . . . . . . 9 ((𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))
1715, 16syl6bb 276 . . . . . . . 8 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
1817imbi2d 330 . . . . . . 7 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
1918ralbidva 2981 . . . . . 6 ((𝐴C𝑦C ) → (∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
203, 19bitrd 268 . . . . 5 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2120ralbidva 2981 . . . 4 (𝐴C → (∀𝑦C 𝐴 𝑀 𝑦 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
222, 21syl5bb 272 . . 3 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
23 ralcom 3092 . . 3 (∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))) ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
2422, 23syl6bb 276 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
25 dmdbr 29046 . . 3 ((𝐴C𝑥C ) → (𝐴 𝑀* 𝑥 ↔ ∀𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2625ralbidva 2981 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀* 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2724, 26bitr4d 271 1 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  cin 3559  wss 3560   class class class wbr 4623  (class class class)co 6615   C cch 27674   chj 27678   𝑀 cmd 27711   𝑀* cdmd 27712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-i2m1 9964  ax-1ne0 9965  ax-rrecex 9968  ax-cnre 9969  ax-hilex 27744  ax-hfvadd 27745  ax-hv0cl 27748  ax-hfvmul 27750
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-map 7819  df-nn 10981  df-hlim 27717  df-sh 27952  df-ch 27966  df-chj 28057  df-md 29027  df-dmd 29028
This theorem is referenced by:  atmd  29146
  Copyright terms: Public domain W3C validator