Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Structured version   Visualization version   GIF version

Theorem mddmd2 29508
 Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem mddmd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4790 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑀 𝑥𝐴 𝑀 𝑦))
21cbvralv 3320 . . . 4 (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C 𝐴 𝑀 𝑦)
3 mdbr 29493 . . . . . 6 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)))))
4 incom 3956 . . . . . . . . . . . 12 ((𝐴 𝑥) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥))
5 chjcom 28705 . . . . . . . . . . . . 13 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
65ineq1d 3964 . . . . . . . . . . . 12 ((𝐴C𝑥C ) → ((𝐴 𝑥) ∩ 𝑦) = ((𝑥 𝐴) ∩ 𝑦))
74, 6syl5reqr 2820 . . . . . . . . . . 11 ((𝐴C𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
87adantlr 694 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
9 incom 3956 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
109oveq1i 6803 . . . . . . . . . . 11 ((𝐴𝑦) ∨ 𝑥) = ((𝑦𝐴) ∨ 𝑥)
11 chincl 28698 . . . . . . . . . . . 12 ((𝐴C𝑦C ) → (𝐴𝑦) ∈ C )
12 chjcom 28705 . . . . . . . . . . . 12 (((𝐴𝑦) ∈ C𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
1311, 12sylan 569 . . . . . . . . . . 11 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
1410, 13syl5reqr 2820 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → (𝑥 (𝐴𝑦)) = ((𝑦𝐴) ∨ 𝑥))
158, 14eqeq12d 2786 . . . . . . . . 9 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ (𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥)))
16 eqcom 2778 . . . . . . . . 9 ((𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))
1715, 16syl6bb 276 . . . . . . . 8 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
1817imbi2d 329 . . . . . . 7 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
1918ralbidva 3134 . . . . . 6 ((𝐴C𝑦C ) → (∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
203, 19bitrd 268 . . . . 5 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2120ralbidva 3134 . . . 4 (𝐴C → (∀𝑦C 𝐴 𝑀 𝑦 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
222, 21syl5bb 272 . . 3 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
23 ralcom 3246 . . 3 (∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))) ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
2422, 23syl6bb 276 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
25 dmdbr 29498 . . 3 ((𝐴C𝑥C ) → (𝐴 𝑀* 𝑥 ↔ ∀𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2625ralbidva 3134 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀* 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2724, 26bitr4d 271 1 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061   ∩ cin 3722   ⊆ wss 3723   class class class wbr 4786  (class class class)co 6793   Cℋ cch 28126   ∨ℋ chj 28130   𝑀ℋ cmd 28163   𝑀ℋ* cdmd 28164 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rrecex 10210  ax-cnre 10211  ax-hilex 28196  ax-hfvadd 28197  ax-hv0cl 28200  ax-hfvmul 28202 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-map 8011  df-nn 11223  df-hlim 28169  df-sh 28404  df-ch 28418  df-chj 28509  df-md 29479  df-dmd 29480 This theorem is referenced by:  atmd  29598
 Copyright terms: Public domain W3C validator