Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsval Structured version   Visualization version   GIF version

Theorem mclsval 31586
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsval.h 𝐻 = (mVH‘𝑇)
mclsval.a 𝐴 = (mAx‘𝑇)
mclsval.s 𝑆 = (mSubst‘𝑇)
mclsval.v 𝑉 = (mVars‘𝑇)
Assertion
Ref Expression
mclsval (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Distinct variable groups:   𝑚,𝑐,𝑜,𝑝,𝑠,𝐸   𝑥,𝑐,𝐻,𝑚,𝑜,𝑝,𝑠   𝑦,𝑐,𝐵,𝑚,𝑜,𝑝,𝑠,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑥   𝐴,𝑐,𝑚,𝑜,𝑝,𝑠   𝑆,𝑐,𝑠,𝑥,𝑦   𝑇,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝑉,𝑐,𝑥   𝐾,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦,𝑐)   𝐷(𝑥,𝑦,𝑚,𝑜,𝑠,𝑝,𝑐)   𝑆(𝑚,𝑜,𝑝)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)

Proof of Theorem mclsval
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
2 mclsval.1 . . . 4 (𝜑𝑇 ∈ mFS)
3 elex 3243 . . . 4 (𝑇 ∈ mFS → 𝑇 ∈ V)
4 fveq2 6229 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
5 mclsval.d . . . . . . . 8 𝐷 = (mDV‘𝑇)
64, 5syl6eqr 2703 . . . . . . 7 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
76pweqd 4196 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝐷)
8 fveq2 6229 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
9 mclsval.e . . . . . . . 8 𝐸 = (mEx‘𝑇)
108, 9syl6eqr 2703 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
1110pweqd 4196 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
12 fveq2 6229 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVH‘𝑡) = (mVH‘𝑇))
13 mclsval.h . . . . . . . . . . . . 13 𝐻 = (mVH‘𝑇)
1412, 13syl6eqr 2703 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVH‘𝑡) = 𝐻)
1514rneqd 5385 . . . . . . . . . . 11 (𝑡 = 𝑇 → ran (mVH‘𝑡) = ran 𝐻)
1615uneq2d 3800 . . . . . . . . . 10 (𝑡 = 𝑇 → ( ∪ ran (mVH‘𝑡)) = ( ∪ ran 𝐻))
1716sseq1d 3665 . . . . . . . . 9 (𝑡 = 𝑇 → (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ↔ ( ∪ ran 𝐻) ⊆ 𝑐))
18 fveq2 6229 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
19 mclsval.a . . . . . . . . . . . . . 14 𝐴 = (mAx‘𝑇)
2018, 19syl6eqr 2703 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
2120eleq2d 2716 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) ↔ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴))
22 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (mSubst‘𝑡) = (mSubst‘𝑇))
23 mclsval.s . . . . . . . . . . . . . . 15 𝑆 = (mSubst‘𝑇)
2422, 23syl6eqr 2703 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mSubst‘𝑡) = 𝑆)
2524rneqd 5385 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ran (mSubst‘𝑡) = ran 𝑆)
2615uneq2d 3800 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑜 ∪ ran (mVH‘𝑡)) = (𝑜 ∪ ran 𝐻))
2726imaeq2d 5501 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) = (𝑠 “ (𝑜 ∪ ran 𝐻)))
2827sseq1d 3665 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
29 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
30 mclsval.v . . . . . . . . . . . . . . . . . . . . 21 𝑉 = (mVars‘𝑇)
3129, 30syl6eqr 2703 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
3214fveq1d 6231 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑥) = (𝐻𝑥))
3332fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑥)) = (𝑠‘(𝐻𝑥)))
3431, 33fveq12d 6235 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) = (𝑉‘(𝑠‘(𝐻𝑥))))
3514fveq1d 6231 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑦) = (𝐻𝑦))
3635fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑦)) = (𝑠‘(𝐻𝑦)))
3731, 36fveq12d 6235 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) = (𝑉‘(𝑠‘(𝐻𝑦))))
3834, 37xpeq12d 5174 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) = ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))))
3938sseq1d 3665 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))
4039imbi2d 329 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
41402albidv 1891 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
4228, 41anbi12d 747 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))))
4342imbi1d 330 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4425, 43raleqbidv 3182 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4521, 44imbi12d 333 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4645albidv 1889 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
47462albidv 1891 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4817, 47anbi12d 747 . . . . . . . 8 (𝑡 = 𝑇 → ((( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))))
4948abbidv 2770 . . . . . . 7 (𝑡 = 𝑇 → {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
5049inteqd 4512 . . . . . 6 (𝑡 = 𝑇 {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
517, 11, 50mpt2eq123dv 6759 . . . . 5 (𝑡 = 𝑇 → (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
52 df-mcls 31520 . . . . 5 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
53 fvex 6239 . . . . . . . 8 (mDV‘𝑇) ∈ V
545, 53eqeltri 2726 . . . . . . 7 𝐷 ∈ V
5554pwex 4878 . . . . . 6 𝒫 𝐷 ∈ V
56 fvex 6239 . . . . . . . 8 (mEx‘𝑇) ∈ V
579, 56eqeltri 2726 . . . . . . 7 𝐸 ∈ V
5857pwex 4878 . . . . . 6 𝒫 𝐸 ∈ V
5955, 58mpt2ex 7292 . . . . 5 (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
6051, 52, 59fvmpt 6321 . . . 4 (𝑇 ∈ V → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
612, 3, 603syl 18 . . 3 (𝜑 → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
621, 61syl5eq 2697 . 2 (𝜑𝐶 = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
63 simprr 811 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → = 𝐵)
6463uneq1d 3799 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ( ∪ ran 𝐻) = (𝐵 ∪ ran 𝐻))
6564sseq1d 3665 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (( ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ 𝑐))
66 simprl 809 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → 𝑑 = 𝐾)
6766sseq2d 3666 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))
6867imbi2d 329 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
69682albidv 1891 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
7069anbi2d 740 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
7170imbi1d 330 . . . . . . . . 9 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7271ralbidv 3015 . . . . . . . 8 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7372imbi2d 329 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7473albidv 1889 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
75742albidv 1891 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7665, 75anbi12d 747 . . . 4 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))))
7776abbidv 2770 . . 3 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
7877inteqd 4512 . 2 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
79 mclsval.2 . . 3 (𝜑𝐾𝐷)
8054elpw2 4858 . . 3 (𝐾 ∈ 𝒫 𝐷𝐾𝐷)
8179, 80sylibr 224 . 2 (𝜑𝐾 ∈ 𝒫 𝐷)
82 mclsval.3 . . 3 (𝜑𝐵𝐸)
8357elpw2 4858 . . 3 (𝐵 ∈ 𝒫 𝐸𝐵𝐸)
8482, 83sylibr 224 . 2 (𝜑𝐵 ∈ 𝒫 𝐸)
855, 9, 1, 2, 79, 82, 13, 19, 23, 30mclsssvlem 31585 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸)
8657ssex 4835 . . 3 ( {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8785, 86syl 17 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8862, 78, 81, 84, 87ovmpt2d 6830 1 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  wral 2941  Vcvv 3231  cun 3605  wss 3607  𝒫 cpw 4191  cotp 4218   cint 4507   class class class wbr 4685   × cxp 5141  ran crn 5144  cima 5146  cfv 5926  (class class class)co 6690  cmpt2 6692  mAxcmax 31488  mExcmex 31490  mDVcmdv 31491  mVarscmvrs 31492  mSubstcmsub 31494  mVHcmvh 31495  mFScmfs 31499  mClscmcls 31500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-frmd 17433  df-mrex 31509  df-mex 31510  df-mrsub 31513  df-msub 31514  df-mvh 31515  df-mpst 31516  df-msr 31517  df-msta 31518  df-mfs 31519  df-mcls 31520
This theorem is referenced by:  mclsssv  31587  ssmclslem  31588  ss2mcls  31591  mclsax  31592  mclsind  31593
  Copyright terms: Public domain W3C validator