Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsrcl Structured version   Visualization version   GIF version

Theorem mclsrcl 31786
Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
mclsrcl (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))

Proof of Theorem mclsrcl
Dummy variables 𝑑 𝑡 𝑐 𝑚 𝑜 𝑝 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4063 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → ¬ (𝐾𝐶𝐵) = ∅)
2 mclsval.c . . . . . 6 𝐶 = (mCls‘𝑇)
3 fvprc 6347 . . . . . 6 𝑇 ∈ V → (mCls‘𝑇) = ∅)
42, 3syl5eq 2806 . . . . 5 𝑇 ∈ V → 𝐶 = ∅)
54oveqd 6831 . . . 4 𝑇 ∈ V → (𝐾𝐶𝐵) = (𝐾𝐵))
6 0ov 6846 . . . 4 (𝐾𝐵) = ∅
75, 6syl6eq 2810 . . 3 𝑇 ∈ V → (𝐾𝐶𝐵) = ∅)
81, 7nsyl2 142 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝑇 ∈ V)
9 fveq2 6353 . . . . . . . . 9 (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇))
109, 2syl6eqr 2812 . . . . . . . 8 (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶)
1110oveqd 6831 . . . . . . 7 (𝑡 = 𝑇 → (𝐾(mCls‘𝑡)𝐵) = (𝐾𝐶𝐵))
1211eleq2d 2825 . . . . . 6 (𝑡 = 𝑇 → (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) ↔ 𝐴 ∈ (𝐾𝐶𝐵)))
13 fvex 6363 . . . . . . . . 9 (mDV‘𝑡) ∈ V
1413elpw2 4977 . . . . . . . 8 (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾 ⊆ (mDV‘𝑡))
15 fveq2 6353 . . . . . . . . . 10 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
16 mclsval.d . . . . . . . . . 10 𝐷 = (mDV‘𝑇)
1715, 16syl6eqr 2812 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
1817sseq2d 3774 . . . . . . . 8 (𝑡 = 𝑇 → (𝐾 ⊆ (mDV‘𝑡) ↔ 𝐾𝐷))
1914, 18syl5bb 272 . . . . . . 7 (𝑡 = 𝑇 → (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾𝐷))
20 fvex 6363 . . . . . . . . 9 (mEx‘𝑡) ∈ V
2120elpw2 4977 . . . . . . . 8 (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵 ⊆ (mEx‘𝑡))
22 fveq2 6353 . . . . . . . . . 10 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
23 mclsval.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
2422, 23syl6eqr 2812 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
2524sseq2d 3774 . . . . . . . 8 (𝑡 = 𝑇 → (𝐵 ⊆ (mEx‘𝑡) ↔ 𝐵𝐸))
2621, 25syl5bb 272 . . . . . . 7 (𝑡 = 𝑇 → (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵𝐸))
2719, 26anbi12d 749 . . . . . 6 (𝑡 = 𝑇 → ((𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)) ↔ (𝐾𝐷𝐵𝐸)))
2812, 27imbi12d 333 . . . . 5 (𝑡 = 𝑇 → ((𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) ↔ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))))
29 vex 3343 . . . . . . 7 𝑡 ∈ V
3013pwex 4997 . . . . . . . 8 𝒫 (mDV‘𝑡) ∈ V
3120pwex 4997 . . . . . . . 8 𝒫 (mEx‘𝑡) ∈ V
3230, 31mpt2ex 7416 . . . . . . 7 (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
33 df-mcls 31722 . . . . . . . 8 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3433fvmpt2 6454 . . . . . . 7 ((𝑡 ∈ V ∧ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V) → (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3529, 32, 34mp2an 710 . . . . . 6 (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
3635elmpt2cl 7042 . . . . 5 (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)))
3728, 36vtoclg 3406 . . . 4 (𝑇 ∈ V → (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸)))
388, 37mpcom 38 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))
3938simpld 477 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐾𝐷)
4038simprd 482 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐵𝐸)
418, 39, 403jca 1123 1 (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  {cab 2746  wral 3050  Vcvv 3340  cun 3713  wss 3715  c0 4058  𝒫 cpw 4302  cotp 4329   cint 4627   class class class wbr 4804   × cxp 5264  ran crn 5267  cima 5269  cfv 6049  (class class class)co 6814  cmpt2 6816  mAxcmax 31690  mExcmex 31692  mDVcmdv 31693  mVarscmvrs 31694  mSubstcmsub 31696  mVHcmvh 31697  mClscmcls 31702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-mcls 31722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator