![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 23496 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6353 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6368 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | syl5eq 2806 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 dom cdm 5266 ↾ cres 5268 ‘cfv 6049 vol*covol 23431 volcvol 23432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fv 6057 df-vol 23434 |
This theorem is referenced by: volss 23501 volun 23513 volinun 23514 volfiniun 23515 voliunlem3 23520 volsup 23524 iccvolcl 23535 ovolioo 23536 volioo 23537 ioovolcl 23538 uniioovol 23547 uniioombllem4 23554 volcn 23574 volivth 23575 vitalilem4 23579 i1fima2 23645 i1fd 23647 i1f0rn 23648 itg1val2 23650 itg1ge0 23652 itg11 23657 i1fadd 23661 i1fmul 23662 itg1addlem2 23663 itg1addlem4 23665 i1fres 23671 itg10a 23676 itg1ge0a 23677 itg1climres 23680 mbfi1fseqlem4 23684 itg2const2 23707 itg2gt0 23726 itg2cnlem2 23728 ftc1a 23999 ftc1lem4 24001 itgulm 24361 areaf 24887 cntnevol 30600 volmeas 30603 mblfinlem3 33761 mblfinlem4 33762 ismblfin 33763 voliunnfl 33766 volsupnfl 33767 itg2addnclem 33774 itg2addnclem2 33775 itg2gt0cn 33778 ftc1cnnclem 33796 ftc1anclem7 33804 areacirc 33818 arearect 38303 areaquad 38304 vol0 40678 volge0 40680 volsn 40686 volicc 40718 vonvol 41382 |
Copyright terms: Public domain | W3C validator |