![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblss | Structured version Visualization version GIF version |
Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblss | ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbl 23514 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
2 | 1 | simplbi 485 | 1 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∖ cdif 3720 ∩ cin 3722 ⊆ wss 3723 𝒫 cpw 4297 dom cdm 5249 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 + caddc 10141 vol*covol 23450 volcvol 23451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-ico 12386 df-icc 12387 df-fz 12534 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-ovol 23452 df-vol 23453 |
This theorem is referenced by: volss 23521 nulmbl2 23524 unmbl 23525 shftmbl 23526 unidmvol 23529 inmbl 23530 difmbl 23531 volun 23533 volinun 23534 volfiniun 23535 voliunlem2 23539 voliunlem3 23540 volsup 23544 volsup2 23593 volcn 23594 vitalilem4 23599 vitalilem5 23600 vitali 23601 ismbf 23616 ismbfcn 23617 mbfconst 23621 mbfid 23623 cncombf 23645 cnmbf 23646 i1fima2 23666 i1fd 23668 itg1ge0 23673 i1f1lem 23676 itg11 23678 i1fadd 23682 i1fmul 23683 itg1addlem2 23684 itg1addlem5 23687 i1fres 23692 itg1ge0a 23698 itg1climres 23701 mbfi1fseqlem4 23705 mbfi1flim 23710 mbfmullem2 23711 itg2const2 23728 itg2splitlem 23735 itg2split 23736 itg2gt0 23747 itg2cnlem2 23749 ibladdlem 23806 itgaddlem1 23809 iblabslem 23814 itggt0 23828 itgcn 23829 ftc1lem4 24022 itgulm 24382 areaf 24909 dmvlsiga 30532 volsupnfl 33787 cnambfre 33790 itg2addnclem 33793 ibladdnclem 33798 itgaddnclem1 33800 iblabsnclem 33805 ftc1cnnclem 33815 volge0 40694 dmvolss 40719 vonvol 41396 |
Copyright terms: Public domain | W3C validator |