![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblsplit | Structured version Visualization version GIF version |
Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblsplit | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10239 | . . . 4 ⊢ ℝ ∈ V | |
2 | 1 | elpw2 4977 | . . 3 ⊢ (𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ) |
3 | ismbl 23514 | . . . . 5 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
4 | 3 | simprbi 483 | . . . 4 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
5 | fveq2 6353 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (vol*‘𝑥) = (vol*‘𝐵)) | |
6 | 5 | eleq1d 2824 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ)) |
7 | ineq1 3950 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
8 | 7 | fveq2d 6357 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∩ 𝐴)) = (vol*‘(𝐵 ∩ 𝐴))) |
9 | difeq1 3864 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∖ 𝐴) = (𝐵 ∖ 𝐴)) | |
10 | 9 | fveq2d 6357 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (vol*‘(𝑥 ∖ 𝐴)) = (vol*‘(𝐵 ∖ 𝐴))) |
11 | 8, 10 | oveq12d 6832 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
12 | 5, 11 | eqeq12d 2775 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴))))) |
13 | 6, 12 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
14 | 13 | rspccv 3446 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
15 | 4, 14 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
16 | 2, 15 | syl5bir 233 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐵 ⊆ ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))))) |
17 | 16 | 3imp 1102 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∖ cdif 3712 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 + caddc 10151 vol*covol 23451 volcvol 23452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-ico 12394 df-icc 12395 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-ovol 23453 df-vol 23454 |
This theorem is referenced by: cmmbl 23522 nulmbl2 23524 unmbl 23525 shftmbl 23526 volun 23533 voliunlem1 23538 uniioombllem4 23574 uniioombllem5 23575 mblfinlem3 33779 mblfinlem4 33780 |
Copyright terms: Public domain | W3C validator |