Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mblsplit Structured version   Visualization version   GIF version

Theorem mblsplit 23520
 Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
mblsplit ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))

Proof of Theorem mblsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reex 10239 . . . 4 ℝ ∈ V
21elpw2 4977 . . 3 (𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ)
3 ismbl 23514 . . . . 5 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
43simprbi 483 . . . 4 (𝐴 ∈ dom vol → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
5 fveq2 6353 . . . . . . 7 (𝑥 = 𝐵 → (vol*‘𝑥) = (vol*‘𝐵))
65eleq1d 2824 . . . . . 6 (𝑥 = 𝐵 → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
7 ineq1 3950 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
87fveq2d 6357 . . . . . . . 8 (𝑥 = 𝐵 → (vol*‘(𝑥𝐴)) = (vol*‘(𝐵𝐴)))
9 difeq1 3864 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
109fveq2d 6357 . . . . . . . 8 (𝑥 = 𝐵 → (vol*‘(𝑥𝐴)) = (vol*‘(𝐵𝐴)))
118, 10oveq12d 6832 . . . . . . 7 (𝑥 = 𝐵 → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))
125, 11eqeq12d 2775 . . . . . 6 (𝑥 = 𝐵 → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴)))))
136, 12imbi12d 333 . . . . 5 (𝑥 = 𝐵 → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
1413rspccv 3446 . . . 4 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
154, 14syl 17 . . 3 (𝐴 ∈ dom vol → (𝐵 ∈ 𝒫 ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
162, 15syl5bir 233 . 2 (𝐴 ∈ dom vol → (𝐵 ⊆ ℝ → ((vol*‘𝐵) ∈ ℝ → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))))
17163imp 1102 1 ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵𝐴)) + (vol*‘(𝐵𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302  dom cdm 5266  ‘cfv 6049  (class class class)co 6814  ℝcr 10147   + caddc 10151  vol*covol 23451  volcvol 23452 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-icc 12395  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-ovol 23453  df-vol 23454 This theorem is referenced by:  cmmbl  23522  nulmbl2  23524  unmbl  23525  shftmbl  23526  volun  23533  voliunlem1  23538  uniioombllem4  23574  uniioombllem5  23575  mblfinlem3  33779  mblfinlem4  33780
 Copyright terms: Public domain W3C validator