![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version |
Description: A Real valued, measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
mbfresmf.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfresmf.2 | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
mbfresmf.3 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
mbfresmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | mbfresmf.3 | . . . 4 ⊢ 𝑆 = dom vol | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom vol) |
4 | dmvolsal 40882 | . . . 4 ⊢ dom vol ∈ SAlg | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom vol ∈ SAlg) |
6 | 3, 5 | eqeltrd 2730 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
7 | mbfresmf.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
8 | mbfdmssre 40535 | . . . 4 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
10 | 2 | unieqi 4477 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom vol |
11 | unidmvol 23355 | . . . 4 ⊢ ∪ dom vol = ℝ | |
12 | 10, 11 | eqtri 2673 | . . 3 ⊢ ∪ 𝑆 = ℝ |
13 | 9, 12 | syl6sseqr 3685 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
14 | mbff 23439 | . . . . 5 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
15 | ffn 6083 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) | |
16 | 7, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
17 | mbfresmf.2 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
18 | 16, 17 | jca 553 | . . 3 ⊢ (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) |
19 | df-f 5930 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
20 | 18, 19 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ) |
22 | rexr 10123 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
24 | 21, 23 | preimaioomnf 41250 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
25 | 24 | eqcomd 2657 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
26 | 4 | elexi 3244 | . . . . . 6 ⊢ dom vol ∈ V |
27 | 2, 26 | eqeltri 2726 | . . . . 5 ⊢ 𝑆 ∈ V |
28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ V) |
29 | 7 | dmexd 39736 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → dom 𝐹 ∈ V) |
31 | mbfima 23444 | . . . . . . 7 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) | |
32 | 7, 20, 31 | syl2anc 694 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) |
33 | 32, 3 | eleqtrrd 2733 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
35 | cnvimass 5520 | . . . . 5 ⊢ (◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 | |
36 | dfss 3622 | . . . . . 6 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) | |
37 | 36 | biimpi 206 | . . . . 5 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) |
38 | 35, 37 | ax-mp 5 | . . . 4 ⊢ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹) |
39 | 28, 30, 34, 38 | elrestd 39605 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
40 | 25, 39 | eqeltrd 2730 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
41 | 1, 6, 13, 20, 40 | issmfd 41265 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 ∪ cuni 4468 class class class wbr 4685 ◡ccnv 5142 dom cdm 5143 ran crn 5144 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 -∞cmnf 10110 ℝ*cxr 10111 < clt 10112 (,)cioo 12213 ↾t crest 16128 volcvol 23278 MblFncmbf 23428 SAlgcsalg 40846 SMblFncsmblfn 41230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xadd 11985 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-rest 16130 df-xmet 19787 df-met 19788 df-ovol 23279 df-vol 23280 df-mbf 23433 df-salg 40847 df-smblfn 41231 |
This theorem is referenced by: mbfpsssmf 41312 |
Copyright terms: Public domain | W3C validator |