Step | Hyp | Ref
| Expression |
1 | | mbfmul.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbff 23439 |
. . . . 5
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
4 | | ffn 6083 |
. . . 4
⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
6 | | mbfmul.2 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ MblFn) |
7 | | mbff 23439 |
. . . . 5
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) |
9 | | ffn 6083 |
. . . 4
⊢ (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
11 | | mbfdm 23440 |
. . . 4
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
12 | 1, 11 | syl 17 |
. . 3
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
13 | | mbfdm 23440 |
. . . 4
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
14 | 6, 13 | syl 17 |
. . 3
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
15 | | eqid 2651 |
. . 3
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
16 | | eqidd 2652 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
17 | | eqidd 2652 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
18 | 5, 10, 12, 14, 15, 16, 17 | offval 6946 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
19 | | elin 3829 |
. . . . . . . . 9
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ dom 𝐺)) |
20 | 19 | simplbi 475 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹) |
21 | | ffvelrn 6397 |
. . . . . . . 8
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ℂ) |
22 | 3, 20, 21 | syl2an 493 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑥) ∈ ℂ) |
23 | 19 | simprbi 479 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺) |
24 | | ffvelrn 6397 |
. . . . . . . 8
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℂ) |
25 | 8, 23, 24 | syl2an 493 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑥) ∈ ℂ) |
26 | 22, 25 | remuld 14002 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥))) = (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
27 | 26 | mpteq2dva 4777 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥)))))) |
28 | | inmbl 23356 |
. . . . . . 7
⊢ ((dom
𝐹 ∈ dom vol ∧ dom
𝐺 ∈ dom vol) →
(dom 𝐹 ∩ dom 𝐺) ∈ dom
vol) |
29 | 12, 14, 28 | syl2anc 694 |
. . . . . 6
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
30 | | ovexd 6720 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) ∈ V) |
31 | | ovexd 6720 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) ∈ V) |
32 | 22 | recld 13978 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
33 | 25 | recld 13978 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐺‘𝑥)) ∈ ℝ) |
34 | | eqidd 2652 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥)))) |
35 | | eqidd 2652 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) |
36 | 29, 32, 33, 34, 35 | offval2 6956 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
37 | 22 | imcld 13979 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐹‘𝑥)) ∈ ℝ) |
38 | 25 | imcld 13979 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐺‘𝑥)) ∈ ℝ) |
39 | | eqidd 2652 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥)))) |
40 | | eqidd 2652 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) |
41 | 29, 37, 38, 39, 40 | offval2 6956 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
42 | 29, 30, 31, 36, 41 | offval2 6956 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘𝑓 −
((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥)))))) |
43 | 27, 42 | eqtr4d 2688 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘𝑓 −
((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))))) |
44 | | inss1 3866 |
. . . . . . . . . 10
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 |
45 | | resmpt 5484 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) |
47 | 3 | feqmptd 6288 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
48 | 47, 1 | eqeltrrd 2731 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn) |
49 | | mbfres 23456 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
50 | 48, 29, 49 | syl2anc 694 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
51 | 46, 50 | syl5eqelr 2735 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn) |
52 | 22 | ismbfcn2 23451 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn))) |
53 | 51, 52 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn)) |
54 | 53 | simpld 474 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
55 | | inss2 3867 |
. . . . . . . . . 10
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
56 | | resmpt 5484 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) |
58 | 8 | feqmptd 6288 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥))) |
59 | 58, 6 | eqeltrrd 2731 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn) |
60 | | mbfres 23456 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
61 | 59, 29, 60 | syl2anc 694 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
62 | 57, 61 | syl5eqelr 2735 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn) |
63 | 25 | ismbfcn2 23451 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn))) |
64 | 62, 63 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn)) |
65 | 64 | simpld 474 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn) |
66 | | eqid 2651 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) |
67 | 32, 66 | fmptd 6425 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
68 | | eqid 2651 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) |
69 | 33, 68 | fmptd 6425 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
70 | 54, 65, 67, 69 | mbfmullem 23537 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∈ MblFn) |
71 | 53 | simprd 478 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn) |
72 | 64 | simprd 478 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn) |
73 | | eqid 2651 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) |
74 | 37, 73 | fmptd 6425 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
75 | | eqid 2651 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) |
76 | 38, 75 | fmptd 6425 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
77 | 71, 72, 74, 76 | mbfmullem 23537 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∈ MblFn) |
78 | 70, 77 | mbfsub 23474 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘𝑓 −
((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))))) ∈ MblFn) |
79 | 43, 78 | eqeltrd 2730 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn) |
80 | 22, 25 | immuld 14003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥))) = (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
81 | 80 | mpteq2dva 4777 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥)))))) |
82 | | ovexd 6720 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) ∈ V) |
83 | | ovexd 6720 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) ∈ V) |
84 | 29, 32, 38, 34, 40 | offval2 6956 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
85 | 29, 37, 33, 39, 35 | offval2 6956 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
86 | 29, 82, 83, 84, 85 | offval2 6956 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥)))))) |
87 | 81, 86 | eqtr4d 2688 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))))) |
88 | 54, 72, 67, 76 | mbfmullem 23537 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∈ MblFn) |
89 | 71, 65, 74, 69 | mbfmullem 23537 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∈ MblFn) |
90 | 88, 89 | mbfadd 23473 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘𝑓 ·
(𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))))) ∈ MblFn) |
91 | 87, 90 | eqeltrd 2730 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn) |
92 | 22, 25 | mulcld 10098 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
93 | 92 | ismbfcn2 23451 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn))) |
94 | 79, 91, 93 | mpbir2and 977 |
. 2
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ∈ MblFn) |
95 | 18, 94 | eqeltrd 2730 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ MblFn) |