![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfmptcl | Structured version Visualization version GIF version |
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
mbfmptcl.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
mbfmptcl.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
mbfmptcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmptcl.1 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
2 | mbff 23613 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
4 | mbfmptcl.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
5 | 4 | ralrimiva 3104 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
6 | dmmptg 5793 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
8 | 7 | feq2d 6192 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
9 | 3, 8 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
10 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | 10 | fmpt 6545 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
12 | 9, 11 | sylibr 224 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
13 | 12 | r19.21bi 3070 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ↦ cmpt 4881 dom cdm 5266 ⟶wf 6045 ℂcc 10146 MblFncmbf 23602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-pm 8028 df-mbf 23607 |
This theorem is referenced by: mbfss 23632 mbfneg 23636 mbfmulc2 23649 mbflim 23654 itgcnlem 23775 itgcnval 23785 itgre 23786 itgim 23787 iblneg 23788 itgneg 23789 iblss 23790 iblss2 23791 ibladd 23806 iblsub 23807 itgadd 23810 itgsub 23811 itgfsum 23812 iblabs 23814 iblabsr 23815 iblmulc2 23816 itgmulc2 23819 itgabs 23820 itgsplit 23821 bddmulibl 23824 itgcn 23828 ditgswap 23842 ditgsplitlem 23843 ftc1a 24019 ibladdnc 33798 itgaddnc 33801 iblsubnc 33802 itgsubnc 33803 iblabsnc 33805 iblmulc2nc 33806 itgmulc2nc 33809 itgabsnc 33810 |
Copyright terms: Public domain | W3C validator |