MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmax Structured version   Visualization version   GIF version

Theorem mbfmax 23461
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfmax.1 (𝜑𝐹:𝐴⟶ℝ)
mbfmax.2 (𝜑𝐹 ∈ MblFn)
mbfmax.3 (𝜑𝐺:𝐴⟶ℝ)
mbfmax.4 (𝜑𝐺 ∈ MblFn)
mbfmax.5 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
Assertion
Ref Expression
mbfmax (𝜑𝐻 ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem mbfmax
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmax.3 . . . . 5 (𝜑𝐺:𝐴⟶ℝ)
21ffvelrnda 6399 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
3 mbfmax.1 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
43ffvelrnda 6399 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
52, 4ifcld 4164 . . 3 ((𝜑𝑥𝐴) → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) ∈ ℝ)
6 mbfmax.5 . . 3 𝐻 = (𝑥𝐴 ↦ if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)))
75, 6fmptd 6425 . 2 (𝜑𝐻:𝐴⟶ℝ)
83adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐹:𝐴⟶ℝ)
98ffvelrnda 6399 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
109rexrd 10127 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℝ*)
111adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ*) → 𝐺:𝐴⟶ℝ)
1211ffvelrnda 6399 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
1312rexrd 10127 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ*)
14 simplr 807 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ*)
15 xrmaxle 12052 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1610, 13, 14, 15syl3anc 1366 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
1716notbid 307 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ ¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦)))
18 ianor 508 . . . . . . . . . 10 (¬ ((𝐹𝑧) ≤ 𝑦 ∧ (𝐺𝑧) ≤ 𝑦) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦))
1917, 18syl6bb 276 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦 ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
20 pnfxr 10130 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
21 elioo2 12254 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2214, 20, 21sylancl 695 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
23 3anan12 1069 . . . . . . . . . . . 12 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)))
2422, 23syl6bb 276 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
25 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
26 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
2725, 26breq12d 4698 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) ≤ (𝐺𝑥) ↔ (𝐹𝑧) ≤ (𝐺𝑧)))
2827, 26, 25ifbieq12d 4146 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → if((𝐹𝑥) ≤ (𝐺𝑥), (𝐺𝑥), (𝐹𝑥)) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
29 fvex 6239 . . . . . . . . . . . . . . 15 (𝐺𝑧) ∈ V
30 fvex 6239 . . . . . . . . . . . . . . 15 (𝐹𝑧) ∈ V
3129, 30ifex 4189 . . . . . . . . . . . . . 14 if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ V
3228, 6, 31fvmpt 6321 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3332adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝐻𝑧) = if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
3433eleq1d 2715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (𝑦(,)+∞)))
3512, 9ifcld 4164 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ)
36 ltpnf 11992 . . . . . . . . . . . . 13 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞)
3735, 36jccir 561 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))
3837biantrud 527 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < +∞))))
3924, 34, 383bitr4d 300 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ 𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
4035rexrd 10127 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*)
41 xrltnle 10143 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ*) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4214, 40, 41syl2anc 694 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
4339, 42bitrd 268 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ¬ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ≤ 𝑦))
44 elioo2 12254 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
4514, 20, 44sylancl 695 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞)))
46 3anan12 1069 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ 𝑦 < (𝐹𝑧) ∧ (𝐹𝑧) < +∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞)))
4745, 46syl6bb 276 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
48 ltpnf 11992 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) < +∞)
499, 48jccir 561 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))
5049biantrud 527 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ (𝑦 < (𝐹𝑧) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) < +∞))))
51 xrltnle 10143 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐹𝑧) ∈ ℝ*) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5214, 10, 51syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐹𝑧) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
5347, 50, 523bitr2d 296 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝑧) ≤ 𝑦))
54 elioo2 12254 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
5514, 20, 54sylancl 695 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞)))
56 3anan12 1069 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ 𝑦 < (𝐺𝑧) ∧ (𝐺𝑧) < +∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞)))
5755, 56syl6bb 276 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
58 ltpnf 11992 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → (𝐺𝑧) < +∞)
5912, 58jccir 561 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))
6059biantrud 527 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ (𝑦 < (𝐺𝑧) ∧ ((𝐺𝑧) ∈ ℝ ∧ (𝐺𝑧) < +∞))))
61 xrltnle 10143 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6214, 13, 61syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (𝑦 < (𝐺𝑧) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6357, 60, 623bitr2d 296 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑦(,)+∞) ↔ ¬ (𝐺𝑧) ≤ 𝑦))
6453, 63orbi12d 746 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)) ↔ (¬ (𝐹𝑧) ≤ 𝑦 ∨ ¬ (𝐺𝑧) ≤ 𝑦)))
6519, 43, 643bitr4d 300 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (𝑦(,)+∞) ↔ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6665pm5.32da 674 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
67 andi 929 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (𝑦(,)+∞) ∨ (𝐺𝑧) ∈ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
6866, 67syl6bb 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
69 ffn 6083 . . . . . . . . 9 (𝐻:𝐴⟶ℝ → 𝐻 Fn 𝐴)
707, 69syl 17 . . . . . . . 8 (𝜑𝐻 Fn 𝐴)
7170adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → 𝐻 Fn 𝐴)
72 elpreima 6377 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
7371, 72syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (𝑦(,)+∞))))
74 ffn 6083 . . . . . . . . 9 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
758, 74syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐹 Fn 𝐴)
76 elpreima 6377 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
7775, 76syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞))))
78 ffn 6083 . . . . . . . . 9 (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴)
7911, 78syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐺 Fn 𝐴)
80 elpreima 6377 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
8179, 80syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (𝑦(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞))))
8277, 81orbi12d 746 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (𝑦(,)+∞)) ∨ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑦(,)+∞)))))
8368, 73, 823bitr4d 300 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞)))))
84 elun 3786 . . . . 5 (𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ↔ (𝑧 ∈ (𝐹 “ (𝑦(,)+∞)) ∨ 𝑧 ∈ (𝐺 “ (𝑦(,)+∞))))
8583, 84syl6bbr 278 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (𝑦(,)+∞)) ↔ 𝑧 ∈ ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞)))))
8685eqrdv 2649 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) = ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))))
87 mbfmax.2 . . . . . 6 (𝜑𝐹 ∈ MblFn)
88 mbfima 23444 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
8987, 3, 88syl2anc 694 . . . . 5 (𝜑 → (𝐹 “ (𝑦(,)+∞)) ∈ dom vol)
90 mbfmax.4 . . . . . 6 (𝜑𝐺 ∈ MblFn)
91 mbfima 23444 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
9290, 1, 91syl2anc 694 . . . . 5 (𝜑 → (𝐺 “ (𝑦(,)+∞)) ∈ dom vol)
93 unmbl 23351 . . . . 5 (((𝐹 “ (𝑦(,)+∞)) ∈ dom vol ∧ (𝐺 “ (𝑦(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9489, 92, 93syl2anc 694 . . . 4 (𝜑 → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9594adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (𝑦(,)+∞)) ∪ (𝐺 “ (𝑦(,)+∞))) ∈ dom vol)
9686, 95eqeltrd 2730 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (𝑦(,)+∞)) ∈ dom vol)
97 xrmaxlt 12050 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℝ* ∧ (𝐺𝑧) ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
9810, 13, 14, 97syl3anc 1366 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
99 mnfxr 10134 . . . . . . . . . . . 12 -∞ ∈ ℝ*
100 elioo2 12254 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10199, 14, 100sylancr 696 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
102 df-3an 1056 . . . . . . . . . . 11 ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
103101, 102syl6bb 276 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦) ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
10433eleq1d 2715 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ (-∞(,)𝑦)))
105 mnflt 11995 . . . . . . . . . . . 12 (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ → -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)))
10635, 105jccir 561 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))))
107106biantrurd 528 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦 ↔ ((if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) ∈ ℝ ∧ -∞ < if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧))) ∧ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦)))
108103, 104, 1073bitr4d 300 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ if((𝐹𝑧) ≤ (𝐺𝑧), (𝐺𝑧), (𝐹𝑧)) < 𝑦))
109 elioo2 12254 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
11099, 14, 109sylancr 696 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦)))
111 df-3an 1056 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧) ∧ (𝐹𝑧) < 𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦))
112110, 111syl6bb 276 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
113 mnflt 11995 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → -∞ < (𝐹𝑧))
1149, 113jccir 561 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)))
115114biantrurd 528 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) < 𝑦 ↔ (((𝐹𝑧) ∈ ℝ ∧ -∞ < (𝐹𝑧)) ∧ (𝐹𝑧) < 𝑦)))
116112, 115bitr4d 271 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐹𝑧) ∈ (-∞(,)𝑦) ↔ (𝐹𝑧) < 𝑦))
117 elioo2 12254 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
11899, 14, 117sylancr 696 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦)))
119 df-3an 1056 . . . . . . . . . . . 12 (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧) ∧ (𝐺𝑧) < 𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦))
120118, 119syl6bb 276 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
121 mnflt 11995 . . . . . . . . . . . . 13 ((𝐺𝑧) ∈ ℝ → -∞ < (𝐺𝑧))
12212, 121jccir 561 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)))
123122biantrurd 528 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) < 𝑦 ↔ (((𝐺𝑧) ∈ ℝ ∧ -∞ < (𝐺𝑧)) ∧ (𝐺𝑧) < 𝑦)))
124120, 123bitr4d 271 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (-∞(,)𝑦) ↔ (𝐺𝑧) < 𝑦))
125116, 124anbi12d 747 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → (((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝐹𝑧) < 𝑦 ∧ (𝐺𝑧) < 𝑦)))
12698, 108, 1253bitr4d 300 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑧𝐴) → ((𝐻𝑧) ∈ (-∞(,)𝑦) ↔ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
127126pm5.32da 674 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
128 anandi 888 . . . . . . 7 ((𝑧𝐴 ∧ ((𝐹𝑧) ∈ (-∞(,)𝑦) ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
129127, 128syl6bb 276 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦)) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
130 elpreima 6377 . . . . . . 7 (𝐻 Fn 𝐴 → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
13171, 130syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐻𝑧) ∈ (-∞(,)𝑦))))
132 elpreima 6377 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
13375, 132syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦))))
134 elpreima 6377 . . . . . . . 8 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
13579, 134syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐺 “ (-∞(,)𝑦)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦))))
136133, 135anbi12d 747 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ((𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))) ↔ ((𝑧𝐴 ∧ (𝐹𝑧) ∈ (-∞(,)𝑦)) ∧ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (-∞(,)𝑦)))))
137129, 131, 1363bitr4d 300 . . . . 5 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦)))))
138 elin 3829 . . . . 5 (𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ↔ (𝑧 ∈ (𝐹 “ (-∞(,)𝑦)) ∧ 𝑧 ∈ (𝐺 “ (-∞(,)𝑦))))
139137, 138syl6bbr 278 . . . 4 ((𝜑𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐻 “ (-∞(,)𝑦)) ↔ 𝑧 ∈ ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦)))))
140139eqrdv 2649 . . 3 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) = ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))))
141 mbfima 23444 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
14287, 3, 141syl2anc 694 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
143 mbfima 23444 . . . . . 6 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
14490, 1, 143syl2anc 694 . . . . 5 (𝜑 → (𝐺 “ (-∞(,)𝑦)) ∈ dom vol)
145 inmbl 23356 . . . . 5 (((𝐹 “ (-∞(,)𝑦)) ∈ dom vol ∧ (𝐺 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
146142, 144, 145syl2anc 694 . . . 4 (𝜑 → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
147146adantr 480 . . 3 ((𝜑𝑦 ∈ ℝ*) → ((𝐹 “ (-∞(,)𝑦)) ∩ (𝐺 “ (-∞(,)𝑦))) ∈ dom vol)
148140, 147eqeltrd 2730 . 2 ((𝜑𝑦 ∈ ℝ*) → (𝐻 “ (-∞(,)𝑦)) ∈ dom vol)
1497, 96, 148ismbfd 23452 1 (𝜑𝐻 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  cun 3605  cin 3606  ifcif 4119   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  volcvol 23278  MblFncmbf 23428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-mbf 23433
This theorem is referenced by:  mbfpos  23463
  Copyright terms: Public domain W3C validator