MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaicc Structured version   Visualization version   GIF version

Theorem mbfimaicc 23599
Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
mbfimaicc (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) ∈ dom vol)

Proof of Theorem mbfimaicc
StepHypRef Expression
1 iccssre 12448 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
21adantl 473 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ)
3 dfss4 4001 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶))
42, 3sylib 208 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶))
5 difreicc 12497 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))
65adantl 473 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))
76difeq2d 3871 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))
84, 7eqtr3d 2796 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))
98imaeq2d 5624 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) = (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
10 ffun 6209 . . . . . 6 (𝐹:𝐴⟶ℝ → Fun 𝐹)
11 funcnvcnv 6117 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
1210, 11syl 17 . . . . 5 (𝐹:𝐴⟶ℝ → Fun 𝐹)
1312ad2antlr 765 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun 𝐹)
14 imadif 6134 . . . 4 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
1513, 14syl 17 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
169, 15eqtrd 2794 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
17 fimacnv 6510 . . . . . 6 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1817adantl 473 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ℝ) = 𝐴)
19 mbfdm 23594 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
20 fdm 6212 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
2120eleq1d 2824 . . . . . . 7 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
2221biimpac 504 . . . . . 6 ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol)
2319, 22sylan 489 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol)
2418, 23eqeltrd 2839 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ℝ) ∈ dom vol)
25 imaundi 5703 . . . . 5 (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞)))
26 mbfima 23598 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝐵)) ∈ dom vol)
27 mbfima 23598 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝐶(,)+∞)) ∈ dom vol)
28 unmbl 23505 . . . . . 6 (((𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞))) ∈ dom vol)
2926, 27, 28syl2anc 696 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞))) ∈ dom vol)
3025, 29syl5eqel 2843 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol)
31 difmbl 23511 . . . 4 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3224, 30, 31syl2anc 696 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3332adantr 472 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3416, 33eqeltrd 2839 1 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cdif 3712  cun 3713  wss 3715  ccnv 5265  dom cdm 5266  cima 5269  Fun wfun 6043  wf 6045  (class class class)co 6813  cr 10127  +∞cpnf 10263  -∞cmnf 10264  (,)cioo 12368  [,]cicc 12371  volcvol 23432  MblFncmbf 23582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xadd 12140  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-xmet 19941  df-met 19942  df-ovol 23433  df-vol 23434  df-mbf 23587
This theorem is referenced by:  mbfimasn  23600
  Copyright terms: Public domain W3C validator