MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem3 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem3 23683
Description: Lemma for mbfi1fseq 23687. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem3
StepHypRef Expression
1 rge0ssre 12473 . . . . . . . . . . . . . . . . . . 19 (0[,)+∞) ⊆ ℝ
2 mbfi1fseq.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
4 ffvelrn 6520 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
52, 3, 4syl2an 495 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
61, 5sseldi 3742 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
7 2nn 11377 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
8 nnnn0 11491 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
9 nnexpcl 13067 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
107, 8, 9sylancr 698 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1110ad2antrl 766 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1211nnred 11227 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
136, 12remulcld 10262 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
14 reflcl 12791 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1615, 11nndivred 11261 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1716ralrimivva 3109 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
18 mbfi1fseq.3 . . . . . . . . . . . . . . 15 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
1918fmpt2 7405 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
2017, 19sylib 208 . . . . . . . . . . . . 13 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
21 fovrn 6969 . . . . . . . . . . . . 13 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
2220, 21syl3an1 1167 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
23223expa 1112 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
24 nnre 11219 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2524ad2antlr 765 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
26 nnnn0 11491 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
27 nnexpcl 13067 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
287, 26, 27sylancr 698 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
2928ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
30 nnre 11219 . . . . . . . . . . . . 13 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℝ)
31 nngt0 11241 . . . . . . . . . . . . 13 ((2↑𝐴) ∈ ℕ → 0 < (2↑𝐴))
3230, 31jca 555 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
3329, 32syl 17 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
34 lemul1 11067 . . . . . . . . . . 11 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3523, 25, 33, 34syl3anc 1477 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3635biimpa 502 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))
37 simplr 809 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℕ)
3837adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ℕ)
39 simplr 809 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → 𝑥 ∈ ℝ)
40 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
4140fveq2d 6356 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
42 simpl 474 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
4342oveq2d 6829 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
4441, 43oveq12d 6831 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
4544fveq2d 6356 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
4645, 43oveq12d 6831 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
47 ovex 6841 . . . . . . . . . . . . . . . 16 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
4846, 18, 47ovmpt2a 6956 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
4938, 39, 48syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5049oveq1d 6828 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)))
512adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
5251ffvelrnda 6522 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
53 elrege0 12471 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5452, 53sylib 208 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5554simpld 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5629nnred 11227 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
5755, 56remulcld 10262 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
5829nnnn0d 11543 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
5958nn0ge0d 11546 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
60 mulge0 10738 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
6154, 56, 59, 60syl12anc 1475 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
62 flge0nn0 12815 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6357, 61, 62syl2anc 696 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6463adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6564nn0cnd 11545 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
6629adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ)
6766nncnd 11228 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ)
6866nnne0d 11257 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0)
6965, 67, 68divcan1d 10994 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7050, 69eqtrd 2794 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7170, 64eqeltrd 2839 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ ℕ0)
72 nn0uz 11915 . . . . . . . . . . 11 0 = (ℤ‘0)
7371, 72syl6eleq 2849 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0))
74 nnmulcl 11235 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ (2↑𝐴) ∈ ℕ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7528, 74mpdan 705 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈ ℕ)
7675ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7776adantr 472 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7877nnzd 11673 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ)
79 elfz5 12527 . . . . . . . . . 10 ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0) ∧ (𝐴 · (2↑𝐴)) ∈ ℤ) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8073, 78, 79syl2anc 696 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8136, 80mpbird 247 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
82 oveq1 6820 . . . . . . . . 9 (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
83 eqid 2760 . . . . . . . . 9 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))
84 ovex 6841 . . . . . . . . 9 (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V
8582, 83, 84fvmpt 6444 . . . . . . . 8 (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8681, 85syl 17 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8723adantr 472 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ)
8887recnd 10260 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ)
8988, 67, 68divcan4d 10999 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥))
9086, 89eqtrd 2794 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥))
91 elfznn0 12626 . . . . . . . . . . . . 13 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0)
9291nn0red 11544 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ)
9328adantl 473 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℕ) → (2↑𝐴) ∈ ℕ)
94 nndivre 11248 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ (2↑𝐴) ∈ ℕ) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9592, 93, 94syl2anr 496 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9695, 83fmptd 6548 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ)
97 ffn 6206 . . . . . . . . . 10 ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9896, 97syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9998adantr 472 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
10099adantr 472 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
101 fnfvelrn 6519 . . . . . . 7 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
102100, 81, 101syl2anc 696 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10390, 102eqeltrrd 2840 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10476nnnn0d 11543 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ0)
105104, 72syl6eleq 2849 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (ℤ‘0))
106 eluzfz2 12542 . . . . . . . . . 10 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
107105, 106syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
108 oveq1 6820 . . . . . . . . . 10 (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
109 ovex 6841 . . . . . . . . . 10 ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V
110108, 83, 109fvmpt 6444 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
111107, 110syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
11225recnd 10260 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
11329nncnd 11228 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
11429nnne0d 11257 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
115112, 113, 114divcan4d 10999 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴)
116111, 115eqtrd 2794 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴)
117 fnfvelrn 6519 . . . . . . . 8 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
11899, 107, 117syl2anc 696 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
119116, 118eqeltrrd 2840 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
120119adantr 472 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
121103, 120ifclda 4264 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
122 eluzfz1 12541 . . . . . . . 8 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
123105, 122syl 17 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
124 oveq1 6820 . . . . . . . 8 (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴)))
125 ovex 6841 . . . . . . . 8 (0 / (2↑𝐴)) ∈ V
126124, 83, 125fvmpt 6444 . . . . . . 7 (0 ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
127123, 126syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
128 nncn 11220 . . . . . . . 8 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℂ)
129 nnne0 11245 . . . . . . . 8 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ≠ 0)
130128, 129div0d 10992 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (0 / (2↑𝐴)) = 0)
13129, 130syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0)
132127, 131eqtrd 2794 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0)
133 fnfvelrn 6519 . . . . . 6 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
13499, 123, 133syl2anc 696 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
135132, 134eqeltrrd 2840 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
136121, 135ifcld 4275 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
137 eqid 2760 . . 3 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
138136, 137fmptd 6548 . 2 ((𝜑𝐴 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
139 mbfi1fseq.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
140 mbfi1fseq.4 . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
141139, 2, 18, 140mbfi1fseqlem2 23682 . . . 4 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
142141adantl 473 . . 3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
143142feq1d 6191 . 2 ((𝜑𝐴 ∈ ℕ) → ((𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) ↔ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))))
144138, 143mpbird 247 1 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  ifcif 4230   class class class wbr 4804  cmpt 4881   × cxp 5264  ran crn 5267   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  cr 10127  0cc0 10128   · cmul 10133  +∞cpnf 10263   < clt 10266  cle 10267  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  [,)cico 12370  [,]cicc 12371  ...cfz 12519  cfl 12785  cexp 13054  MblFncmbf 23582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-ico 12374  df-fz 12520  df-fl 12787  df-seq 12996  df-exp 13055
This theorem is referenced by:  mbfi1fseqlem4  23684
  Copyright terms: Public domain W3C validator