Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseq Structured version   Visualization version   GIF version

Theorem mbfi1fseq 23707
 Description: A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
mbfi1fseq (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘𝑟 ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hint:   𝜑(𝑔)

Proof of Theorem mbfi1fseq
Dummy variables 𝑗 𝑘 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 oveq2 6800 . . . . . 6 (𝑗 = 𝑘 → (2↑𝑗) = (2↑𝑘))
43oveq2d 6808 . . . . 5 (𝑗 = 𝑘 → ((𝐹𝑧) · (2↑𝑗)) = ((𝐹𝑧) · (2↑𝑘)))
54fveq2d 6336 . . . 4 (𝑗 = 𝑘 → (⌊‘((𝐹𝑧) · (2↑𝑗))) = (⌊‘((𝐹𝑧) · (2↑𝑘))))
65, 3oveq12d 6810 . . 3 (𝑗 = 𝑘 → ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)) = ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)))
7 fveq2 6332 . . . . 5 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
87fvoveq1d 6814 . . . 4 (𝑧 = 𝑦 → (⌊‘((𝐹𝑧) · (2↑𝑘))) = (⌊‘((𝐹𝑦) · (2↑𝑘))))
98oveq1d 6807 . . 3 (𝑧 = 𝑦 → ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)) = ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
106, 9cbvmpt2v 6881 . 2 (𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗))) = (𝑘 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
11 eleq1w 2832 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑚[,]𝑚)))
12 oveq2 6800 . . . . . . . 8 (𝑦 = 𝑥 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) = (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
1312breq1d 4794 . . . . . . 7 (𝑦 = 𝑥 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚 ↔ (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚))
1413, 12ifbieq1d 4246 . . . . . 6 (𝑦 = 𝑥 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚) = if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚))
1511, 14ifbieq1d 4246 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0) = if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
1615cbvmptv 4882 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
17 negeq 10474 . . . . . . . 8 (𝑚 = 𝑘 → -𝑚 = -𝑘)
18 id 22 . . . . . . . 8 (𝑚 = 𝑘𝑚 = 𝑘)
1917, 18oveq12d 6810 . . . . . . 7 (𝑚 = 𝑘 → (-𝑚[,]𝑚) = (-𝑘[,]𝑘))
2019eleq2d 2835 . . . . . 6 (𝑚 = 𝑘 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑘[,]𝑘)))
21 oveq1 6799 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) = (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
2221, 18breq12d 4797 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚 ↔ (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘))
2322, 21, 18ifbieq12d 4250 . . . . . 6 (𝑚 = 𝑘 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚) = if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘))
2420, 23ifbieq1d 4246 . . . . 5 (𝑚 = 𝑘 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))
2524mpteq2dv 4877 . . . 4 (𝑚 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2616, 25syl5eq 2816 . . 3 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2726cbvmptv 4882 . 2 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0))) = (𝑘 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
281, 2, 10, 27mbfi1fseqlem6 23706 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘𝑟 ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070  ∃wex 1851   ∈ wcel 2144  ∀wral 3060  ifcif 4223   class class class wbr 4784   ↦ cmpt 4861  dom cdm 5249  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794   ∘𝑟 cofr 7042  ℝcr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  +∞cpnf 10272   ≤ cle 10276  -cneg 10468   / cdiv 10885  ℕcn 11221  2c2 11271  [,)cico 12381  [,]cicc 12382  ⌊cfl 12798  ↑cexp 13066   ⇝ cli 14422  MblFncmbf 23601  ∫1citg1 23602  0𝑝c0p 23655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-rest 16290  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-bases 20970  df-cmp 21410  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-0p 23656 This theorem is referenced by:  mbfi1flimlem  23708  itg2add  23745
 Copyright terms: Public domain W3C validator