MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm2 Structured version   Visualization version   GIF version

Theorem mbfdm2 23625
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfdm2 (𝜑𝐴 ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfdm2
StepHypRef Expression
1 mbfmptcl.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3115 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 5775 . . 3 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 mbfmptcl.1 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 mbfdm 23614 . . 3 ((𝑥𝐴𝐵) ∈ MblFn → dom (𝑥𝐴𝐵) ∈ dom vol)
75, 6syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) ∈ dom vol)
84, 7eqeltrrd 2851 1 (𝜑𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  cmpt 4864  dom cdm 5250  volcvol 23451  MblFncmbf 23602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-2 11285  df-ioo 12384  df-cj 14047  df-re 14048  df-mbf 23607
This theorem is referenced by:  mbfss  23633  mbfpos  23638  mbfposr  23639  mbfmulc2  23650  mbfi1flim  23710  itgge0  23797  itgss3  23801  itgless  23803  ibladdlem  23806  ibladd  23807  itgaddlem1  23809  iblabslem  23814  itgsplit  23822  bddmulibl  23825  itggt0  23828  itgcn  23829  ibladdnclem  33798  itgaddnclem1  33800  iblabsnclem  33805  itgmulc2nclem2  33809  itgmulc2nc  33810  itgabsnc  33811  iblsplit  40696
  Copyright terms: Public domain W3C validator