MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfaddlem Structured version   Visualization version   GIF version

Theorem mbfaddlem 23618
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
mbfadd.3 (𝜑𝐹:𝐴⟶ℝ)
mbfadd.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfaddlem (𝜑 → (𝐹𝑓 + 𝐺) ∈ MblFn)

Proof of Theorem mbfaddlem
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10203 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 473 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 mbfadd.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 mbfadd.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
5 fdm 6204 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
63, 5syl 17 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
7 mbfadd.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
8 mbfdm 23586 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
97, 8syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
106, 9eqeltrrd 2832 . . 3 (𝜑𝐴 ∈ dom vol)
11 inidm 3957 . . 3 (𝐴𝐴) = 𝐴
122, 3, 4, 10, 10, 11off 7069 . 2 (𝜑 → (𝐹𝑓 + 𝐺):𝐴⟶ℝ)
13 eliun 4668 . . . . 5 (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))))
14 r19.42v 3222 . . . . . . 7 (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
15 simplr 809 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
1716ffvelrnda 6514 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
183adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
1918ffvelrnda 6514 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
2015, 17, 19ltsubaddd 10807 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
2115adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ)
22 qre 11978 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
2322adantl 473 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ)
2417adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺𝑥) ∈ ℝ)
25 ltsub23 10692 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2621, 23, 24, 25syl3anc 1473 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2726anbi2d 742 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦 − (𝐺𝑥)) < 𝑟)))
28 ancom 465 . . . . . . . . . . . . 13 ((𝑟 < (𝐹𝑥) ∧ (𝑦 − (𝐺𝑥)) < 𝑟) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
2927, 28syl6bb 276 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3029rexbidva 3179 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3115, 17resubcld 10642 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3231adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3319adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹𝑥) ∈ ℝ)
34 lttr 10298 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3532, 23, 33, 34syl3anc 1473 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3635rexlimdva 3161 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
37 qbtwnre 12215 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
38373expia 1114 . . . . . . . . . . . . 13 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3931, 19, 38syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
4036, 39impbid 202 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
4130, 40bitrd 268 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
42 ffn 6198 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
433, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4443adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
45 ffn 6198 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴)
464, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝐴)
4746adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺 Fn 𝐴)
4810adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
49 eqidd 2753 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
50 eqidd 2753 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
5144, 47, 48, 48, 11, 49, 50ofval 7063 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝑓 + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5251breq2d 4808 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
5320, 41, 523bitr4d 300 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥)))
5423rexrd 10273 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*)
55 elioopnf 12452 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5654, 55syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5733biantrurd 530 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑟 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5856, 57bitr4d 271 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹𝑥)))
5921, 23resubcld 10642 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ)
6059rexrd 10273 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ*)
61 elioopnf 12452 . . . . . . . . . . . . 13 ((𝑦𝑟) ∈ ℝ* → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6324biantrurd 530 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6462, 63bitr4d 271 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ (𝑦𝑟) < (𝐺𝑥)))
6558, 64anbi12d 749 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6665rexbidva 3179 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6715rexrd 10273 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
68 elioopnf 12452 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
6967, 68syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
7012adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑓 + 𝐺):𝐴⟶ℝ)
7170ffvelrnda 6514 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ)
7271biantrurd 530 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
7369, 72bitr4d 271 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥)))
7453, 66, 733bitr4d 300 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))
7574pm5.32da 676 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
7614, 75syl5bb 272 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
77 elpreima 6492 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
7844, 77syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
79 elpreima 6492 . . . . . . . . . 10 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8047, 79syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8178, 80anbi12d 749 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
82 elin 3931 . . . . . . . 8 (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))))
83 anandi 906 . . . . . . . 8 ((𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8481, 82, 833bitr4g 303 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
8584rexbidv 3182 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
86 ffn 6198 . . . . . . . . 9 ((𝐹𝑓 + 𝐺):𝐴⟶ℝ → (𝐹𝑓 + 𝐺) Fn 𝐴)
8712, 86syl 17 . . . . . . . 8 (𝜑 → (𝐹𝑓 + 𝐺) Fn 𝐴)
8887adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑓 + 𝐺) Fn 𝐴)
89 elpreima 6492 . . . . . . 7 ((𝐹𝑓 + 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
9088, 89syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
9176, 85, 903bitr4d 300 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞))))
9213, 91syl5bb 272 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞))))
9392eqrdv 2750 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) = ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)))
94 qnnen 15133 . . . . 5 ℚ ≈ ℕ
95 endom 8140 . . . . 5 (ℚ ≈ ℕ → ℚ ≼ ℕ)
9694, 95ax-mp 5 . . . 4 ℚ ≼ ℕ
97 mbfima 23590 . . . . . . . 8 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
987, 3, 97syl2anc 696 . . . . . . 7 (𝜑 → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
99 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
100 mbfima 23590 . . . . . . . 8 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
10199, 4, 100syl2anc 696 . . . . . . 7 (𝜑 → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
102 inmbl 23502 . . . . . . 7 (((𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10398, 101, 102syl2anc 696 . . . . . 6 (𝜑 → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
104103ad2antrr 764 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
105104ralrimiva 3096 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
106 iunmbl2 23517 . . . 4 ((ℚ ≼ ℕ ∧ ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10796, 105, 106sylancr 698 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10893, 107eqeltrrd 2832 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ∈ dom vol)
10912, 108ismbf3d 23612 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wral 3042  wrex 3043  cin 3706   ciun 4664   class class class wbr 4796  ccnv 5257  dom cdm 5258  cima 5261   Fn wfn 6036  wf 6037  cfv 6041  (class class class)co 6805  𝑓 cof 7052  cen 8110  cdom 8111  cr 10119   + caddc 10123  +∞cpnf 10255  *cxr 10257   < clt 10258  cmin 10450  cn 11204  cq 11973  (,)cioo 12360  volcvol 23424  MblFncmbf 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cc 9441  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-omul 7726  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-rp 12018  df-xadd 12132  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-rlim 14411  df-sum 14608  df-xmet 19933  df-met 19934  df-ovol 23425  df-vol 23426  df-mbf 23579
This theorem is referenced by:  mbfadd  23619
  Copyright terms: Public domain W3C validator