HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Structured version   Visualization version   GIF version

Theorem mayete3i 28896
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a 𝐴C
mayete3.b 𝐵C
mayete3.c 𝐶C
mayete3.d 𝐷C
mayete3.f 𝐹C
mayete3.g 𝐺C
mayete3.ac 𝐴 ⊆ (⊥‘𝐶)
mayete3.af 𝐴 ⊆ (⊥‘𝐹)
mayete3.cf 𝐶 ⊆ (⊥‘𝐹)
mayete3.ab 𝐴 ⊆ (⊥‘𝐵)
mayete3.cd 𝐶 ⊆ (⊥‘𝐷)
mayete3.fg 𝐹 ⊆ (⊥‘𝐺)
mayete3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayete3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayete3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayete3i (𝑋𝑌) ⊆ 𝑍

Proof of Theorem mayete3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3939 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
2 mayete3.a . . . . . . . . . . . . 13 𝐴C
3 mayete3.c . . . . . . . . . . . . 13 𝐶C
42, 3chjcli 28625 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
5 mayete3.f . . . . . . . . . . . 12 𝐹C
64, 5chjcli 28625 . . . . . . . . . . 11 ((𝐴 𝐶) ∨ 𝐹) ∈ C
76cheli 28398 . . . . . . . . . 10 (𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) → 𝑥 ∈ ℋ)
8 mayete3.x . . . . . . . . . 10 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
97, 8eleq2s 2857 . . . . . . . . 9 (𝑥𝑋𝑥 ∈ ℋ)
109adantr 472 . . . . . . . 8 ((𝑥𝑋𝑥𝑌) → 𝑥 ∈ ℋ)
111, 10sylbi 207 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ℋ)
12 ax-hvmulid 28172 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
13 2cn 11283 . . . . . . . . . . 11 2 ∈ ℂ
14 2ne0 11305 . . . . . . . . . . 11 2 ≠ 0
15 recid2 10892 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0) → ((1 / 2) · 2) = 1)
1613, 14, 15mp2an 710 . . . . . . . . . 10 ((1 / 2) · 2) = 1
1716oveq1i 6823 . . . . . . . . 9 (((1 / 2) · 2) · 𝑥) = (1 · 𝑥)
18 halfcn 11439 . . . . . . . . . 10 (1 / 2) ∈ ℂ
19 ax-hvmulass 28173 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2018, 13, 19mp3an12 1563 . . . . . . . . 9 (𝑥 ∈ ℋ → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2117, 20syl5eqr 2808 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2212, 21eqtr3d 2796 . . . . . . 7 (𝑥 ∈ ℋ → 𝑥 = ((1 / 2) · (2 · 𝑥)))
2311, 22syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((1 / 2) · (2 · 𝑥)))
24 hv2times 28227 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (2 · 𝑥) = (𝑥 + 𝑥))
2524oveq1d 6828 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
2611, 25syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
27 inss2 3977 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑌
2827sseli 3740 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑌)
29 mayete3.y . . . . . . . . . . . . . . 15 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
3029elin2 3944 . . . . . . . . . . . . . 14 (𝑥𝑌 ↔ (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)))
31 elin 3939 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ↔ (𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)))
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ (⊥‘𝐵)
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20 𝐵C
342, 33pjdsi 28880 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝐴 ⊆ (⊥‘𝐵)) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
3532, 34mpan2 709 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 𝐵) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19 𝐶 ⊆ (⊥‘𝐷)
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20 𝐷C
383, 37pjdsi 28880 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐶 𝐷) ∧ 𝐶 ⊆ (⊥‘𝐷)) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
3936, 38mpan2 709 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐶 𝐷) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
4035, 39oveqan12d 6832 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
4131, 40sylbi 207 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
42 inss1 3976 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ (𝐴 𝐵)
4342sseli 3740 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → 𝑥 ∈ (𝐴 𝐵))
442, 33chjcli 28625 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
4544cheli 28398 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 𝐵) → 𝑥 ∈ ℋ)
462pjhcli 28586 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐴)‘𝑥) ∈ ℋ)
4733pjhcli 28586 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ ℋ)
483pjhcli 28586 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐶)‘𝑥) ∈ ℋ)
4937pjhcli 28586 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ ℋ)
50 hvadd4 28202 . . . . . . . . . . . . . . . . . 18 (((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐵)‘𝑥) ∈ ℋ) ∧ (((proj𝐶)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5146, 47, 48, 49, 50syl22anc 1478 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5243, 45, 513syl 18 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5341, 52eqtrd 2794 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
54 mayete3.fg . . . . . . . . . . . . . . . 16 𝐹 ⊆ (⊥‘𝐺)
55 mayete3.g . . . . . . . . . . . . . . . . 17 𝐺C
565, 55pjdsi 28880 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐹 𝐺) ∧ 𝐹 ⊆ (⊥‘𝐺)) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5754, 56mpan2 709 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐹 𝐺) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5853, 57oveqan12d 6832 . . . . . . . . . . . . . 14 ((𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
5930, 58sylbi 207 . . . . . . . . . . . . 13 (𝑥𝑌 → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
6028, 59syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
61 hvaddcl 28178 . . . . . . . . . . . . . . 15 ((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐶)‘𝑥) ∈ ℋ) → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
6246, 48, 61syl2anc 696 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
63 hvaddcl 28178 . . . . . . . . . . . . . . 15 ((((proj𝐵)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
6447, 49, 63syl2anc 696 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
655pjhcli 28586 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐹)‘𝑥) ∈ ℋ)
6655pjhcli 28586 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ ℋ)
67 hvadd4 28202 . . . . . . . . . . . . . 14 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ) ∧ (((proj𝐹)‘𝑥) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ)) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6862, 64, 65, 66, 67syl22anc 1478 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6911, 68syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
7026, 60, 693eqtrd 2798 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
71 inss1 3976 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑋
7271sseli 3740 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑋)
7372, 8syl6eleq 2849 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹))
74 mayete3.ac . . . . . . . . . . . 12 𝐴 ⊆ (⊥‘𝐶)
75 mayete3.af . . . . . . . . . . . . 13 𝐴 ⊆ (⊥‘𝐹)
76 mayete3.cf . . . . . . . . . . . . 13 𝐶 ⊆ (⊥‘𝐹)
772, 3, 5pjds3i 28881 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) ∧ (𝐴 ⊆ (⊥‘𝐹) ∧ 𝐶 ⊆ (⊥‘𝐹))) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7875, 76, 77mpanr12 723 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7973, 74, 78sylancl 697 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
8070, 79oveq12d 6831 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))))
81 hvmulcl 28179 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (2 · 𝑥) ∈ ℋ)
8213, 81mpan 708 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (2 · 𝑥) ∈ ℋ)
83 hvpncan 28205 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8482, 83mpancom 706 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8511, 84syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8680, 85eqtr3d 2796 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = (2 · 𝑥))
87 hvaddcl 28178 . . . . . . . . . . . 12 (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ ((proj𝐹)‘𝑥) ∈ ℋ) → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
8862, 65, 87syl2anc 696 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
89 hvaddcl 28178 . . . . . . . . . . . 12 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
9064, 66, 89syl2anc 696 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
91 hvpncan2 28206 . . . . . . . . . . 11 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ ∧ ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9288, 90, 91syl2anc 696 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9311, 92syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9486, 93eqtr3d 2796 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9533pjcli 28585 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ 𝐵)
9637pjcli 28585 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ 𝐷)
9733chshii 28393 . . . . . . . . . . . 12 𝐵S
9837chshii 28393 . . . . . . . . . . . 12 𝐷S
9997, 98shsvai 28532 . . . . . . . . . . 11 ((((proj𝐵)‘𝑥) ∈ 𝐵 ∧ ((proj𝐷)‘𝑥) ∈ 𝐷) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10095, 96, 99syl2anc 696 . . . . . . . . . 10 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10155pjcli 28585 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ 𝐺)
10297, 98shscli 28485 . . . . . . . . . . 11 (𝐵 + 𝐷) ∈ S
10355chshii 28393 . . . . . . . . . . 11 𝐺S
104102, 103shsvai 28532 . . . . . . . . . 10 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷) ∧ ((proj𝐺)‘𝑥) ∈ 𝐺) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
105100, 101, 104syl2anc 696 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10611, 105syl 17 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10794, 106eqeltrd 2839 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺))
108102, 103shscli 28485 . . . . . . . 8 ((𝐵 + 𝐷) + 𝐺) ∈ S
109 shmulcl 28384 . . . . . . . 8 ((((𝐵 + 𝐷) + 𝐺) ∈ S ∧ (1 / 2) ∈ ℂ ∧ (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺)) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
110108, 18, 109mp3an12 1563 . . . . . . 7 ((2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
111107, 110syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
11223, 111eqeltrd 2839 . . . . 5 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐵 + 𝐷) + 𝐺))
113112ssriv 3748 . . . 4 (𝑋𝑌) ⊆ ((𝐵 + 𝐷) + 𝐺)
11433, 37chsleji 28626 . . . . 5 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
11533, 37chjcli 28625 . . . . . . 7 (𝐵 𝐷) ∈ C
116115chshii 28393 . . . . . 6 (𝐵 𝐷) ∈ S
117102, 116, 103shlessi 28545 . . . . 5 ((𝐵 + 𝐷) ⊆ (𝐵 𝐷) → ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺))
118114, 117ax-mp 5 . . . 4 ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺)
119113, 118sstri 3753 . . 3 (𝑋𝑌) ⊆ ((𝐵 𝐷) + 𝐺)
120115, 55chsleji 28626 . . 3 ((𝐵 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) ∨ 𝐺)
121119, 120sstri 3753 . 2 (𝑋𝑌) ⊆ ((𝐵 𝐷) ∨ 𝐺)
122 mayete3.z . 2 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
123121, 122sseqtr4i 3779 1 (𝑋𝑌) ⊆ 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2139  wne 2932  cin 3714  wss 3715  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   · cmul 10133   / cdiv 10876  2c2 11262  chil 28085   + cva 28086   · csm 28087   cmv 28091   S csh 28094   C cch 28095  cort 28096   + cph 28097   chj 28099  projcpjh 28103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208  ax-hilex 28165  ax-hfvadd 28166  ax-hvcom 28167  ax-hvass 28168  ax-hv0cl 28169  ax-hvaddid 28170  ax-hfvmul 28171  ax-hvmulid 28172  ax-hvmulass 28173  ax-hvdistr1 28174  ax-hvdistr2 28175  ax-hvmul0 28176  ax-hfi 28245  ax-his1 28248  ax-his2 28249  ax-his3 28250  ax-his4 28251  ax-hcompl 28368
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-sum 14616  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-cn 21233  df-cnp 21234  df-lm 21235  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cfil 23253  df-cau 23254  df-cmet 23255  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765  df-dip 27865  df-ssp 27886  df-ph 27977  df-cbn 28028  df-hnorm 28134  df-hba 28135  df-hvsub 28137  df-hlim 28138  df-hcau 28139  df-sh 28373  df-ch 28387  df-oc 28418  df-ch0 28419  df-shs 28476  df-chj 28478  df-pjh 28563
This theorem is referenced by:  mayetes3i  28897
  Copyright terms: Public domain W3C validator