Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxsta Structured version   Visualization version   GIF version

Theorem maxsta 31577
 Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
maxsta.a 𝐴 = (mAx‘𝑇)
maxsta.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
maxsta (𝑇 ∈ mFS → 𝐴𝑆)

Proof of Theorem maxsta
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2651 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
3 eqid 2651 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2651 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2651 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 maxsta.a . . . 4 𝐴 = (mAx‘𝑇)
7 maxsta.s . . . 4 𝑆 = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 31572 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 256 . 2 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simprld 810 1 (𝑇 ∈ mFS → 𝐴𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  {csn 4210  ◡ccnv 5142   “ cima 5146  ⟶wf 5922  ‘cfv 5926  Fincfn 7997  mCNcmcn 31483  mVRcmvar 31484  mTypecmty 31485  mVTcmvt 31486  mTCcmtc 31487  mAxcmax 31488  mStatcmsta 31498  mFScmfs 31499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-mfs 31519 This theorem is referenced by:  mclsssvlem  31585  mclsax  31592  mclsind  31593  mclsppslem  31606
 Copyright terms: Public domain W3C validator