![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max1 | Structured version Visualization version GIF version |
Description: A number is less than or equal to the maximum of it and another. See also max1ALT 12055. (Contributed by NM, 3-Apr-2005.) |
Ref | Expression |
---|---|
max1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10123 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10123 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmax1 12044 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | |
4 | 1, 2, 3 | syl2an 493 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ifcif 4119 class class class wbr 4685 ℝcr 9973 ℝ*cxr 10111 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 |
This theorem is referenced by: z2ge 12067 ssfzunsnext 12424 uzsup 12702 expmulnbnd 13036 discr1 13040 rexuzre 14136 rexico 14137 caubnd 14142 limsupgre 14256 limsupbnd2 14258 rlim3 14273 lo1bdd2 14299 o1lo1 14312 rlimclim1 14320 lo1mul 14402 rlimno1 14428 cvgrat 14659 ruclem10 15012 bitsfzo 15204 1arith 15678 setsstruct2 15943 evth 22805 ioombl1lem1 23372 mbfi1flimlem 23534 itg2monolem3 23564 iblre 23605 itgreval 23608 iblss 23616 i1fibl 23619 itgitg1 23620 itgle 23621 itgeqa 23625 iblconst 23629 itgconst 23630 ibladdlem 23631 itgaddlem2 23635 iblabslem 23639 iblabsr 23641 iblmulc2 23642 itgmulc2lem2 23644 itgsplit 23647 plyaddlem1 24014 coeaddlem 24050 o1cxp 24746 cxp2lim 24748 cxploglim2 24750 ftalem1 24844 ftalem2 24845 chtppilim 25209 dchrisumlem3 25225 ostth2lem2 25368 ostth3 25372 knoppndvlem18 32645 ibladdnclem 33596 itgaddnclem2 33599 iblabsnclem 33603 iblmulc2nc 33605 itgmulc2nclem2 33607 ftc1anclem5 33619 irrapxlem4 37706 irrapxlem5 37707 rexabslelem 39958 uzublem 39970 max1d 39991 uzubioo 40112 climsuse 40158 limsupubuzlem 40262 limsupmnfuzlem 40276 limsupequzmptlem 40278 limsupre3uzlem 40285 liminflelimsuplem 40325 ioodvbdlimc1lem2 40465 ioodvbdlimc2lem 40467 |
Copyright terms: Public domain | W3C validator |