MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmuldm Structured version   Visualization version   GIF version

Theorem mavmuldm 20550
Description: The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵𝑚 (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵𝑚 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
Assertion
Ref Expression
mavmuldm ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))

Proof of Theorem mavmuldm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mavmuldm.t . . . 4 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mavmuldm.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2752 . . . 4 (.r𝑅) = (.r𝑅)
4 simp1 1130 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑅𝑉)
5 simp2 1131 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑀 ∈ Fin)
6 simp3 1132 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 20542 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → · = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
87dmeqd 5473 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = dom (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
9 mptexg 6640 . . . . . 6 (𝑀 ∈ Fin → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1093ad2ant2 1128 . . . . 5 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1110a1d 25 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)) ∧ 𝑦 ∈ (𝐵𝑚 𝑁)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V))
1211ralrimivv 3100 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁))∀𝑦 ∈ (𝐵𝑚 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
13 eqid 2752 . . . 4 (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))))
1413dmmpt2ga 7402 . . 3 (∀𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁))∀𝑦 ∈ (𝐵𝑚 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V → dom (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵𝑚 (𝑀 × 𝑁)) × (𝐵𝑚 𝑁)))
1512, 14syl 17 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom (𝑥 ∈ (𝐵𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵𝑚 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵𝑚 (𝑀 × 𝑁)) × (𝐵𝑚 𝑁)))
16 mavmuldm.c . . . . 5 𝐶 = (𝐵𝑚 (𝑀 × 𝑁))
1716eqcomi 2761 . . . 4 (𝐵𝑚 (𝑀 × 𝑁)) = 𝐶
1817a1i 11 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵𝑚 (𝑀 × 𝑁)) = 𝐶)
19 mavmuldm.d . . . . 5 𝐷 = (𝐵𝑚 𝑁)
2019a1i 11 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝐷 = (𝐵𝑚 𝑁))
2120eqcomd 2758 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵𝑚 𝑁) = 𝐷)
2218, 21xpeq12d 5289 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝐵𝑚 (𝑀 × 𝑁)) × (𝐵𝑚 𝑁)) = (𝐶 × 𝐷))
238, 15, 223eqtrd 2790 1 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cop 4319  cmpt 4873   × cxp 5256  dom cdm 5258  cfv 6041  (class class class)co 6805  cmpt2 6807  𝑚 cmap 8015  Fincfn 8113  Basecbs 16051  .rcmulr 16136   Σg cgsu 16295   maVecMul cmvmul 20540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-mvmul 20541
This theorem is referenced by:  mavmulsolcl  20551
  Copyright terms: Public domain W3C validator