Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulass Structured version   Visualization version   GIF version

Theorem mavmulass 20549
 Description: Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
mavmulass.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
mavmulass.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulass.z (𝜑𝑍 ∈ (Base‘𝐴))
Assertion
Ref Expression
mavmulass (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))

Proof of Theorem mavmulass
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2752 . . . 4 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . . 4 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . . 4 (𝜑𝑁 ∈ Fin)
7 mavmulass.m . . . . . 6 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
8 mavmulass.x . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐴))
91, 3matbas2 20421 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
106, 5, 9syl2anc 696 . . . . . . 7 (𝜑 → (𝐵𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
118, 10eleqtrrd 2834 . . . . . 6 (𝜑𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
12 mavmulass.z . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐴))
1312, 10eleqtrrd 2834 . . . . . 6 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
143, 5, 7, 6, 6, 6, 11, 13mamucl 20401 . . . . 5 (𝜑 → (𝑋 × 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑁)))
1514, 10eleqtrd 2833 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴))
16 1mavmul.y . . . 4 (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
171, 2, 3, 4, 5, 6, 15, 16mavmulcl 20547 . . 3 (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵𝑚 𝑁))
18 elmapi 8037 . . 3 (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵𝑚 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁𝐵)
19 ffn 6198 . . 3 (((𝑋 × 𝑍) · 𝑌):𝑁𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
2017, 18, 193syl 18 . 2 (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
211, 2, 3, 4, 5, 6, 12, 16mavmulcl 20547 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ (𝐵𝑚 𝑁))
221, 2, 3, 4, 5, 6, 8, 21mavmulcl 20547 . . 3 (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵𝑚 𝑁))
23 elmapi 8037 . . 3 ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵𝑚 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁𝐵)
24 ffn 6198 . . 3 ((𝑋 · (𝑍 · 𝑌)):𝑁𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
2522, 23, 243syl 18 . 2 (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
26 ringcmn 18773 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
275, 26syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2827adantr 472 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
296adantr 472 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
305ad2antrr 764 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑅 ∈ Ring)
31 elmapi 8037 . . . . . . . . 9 (𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
3211, 31syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
3332ad2antrr 764 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
34 simplr 809 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑖𝑁)
35 simprr 813 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑘𝑁)
3633, 34, 35fovrnd 6963 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵)
37 elmapi 8037 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
3813, 37syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐵)
3938ad2antrr 764 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
40 simprl 811 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑗𝑁)
4139, 35, 40fovrnd 6963 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵)
42 elmapi 8037 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 𝑁) → 𝑌:𝑁𝐵)
43 ffvelrn 6512 . . . . . . . . . . 11 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4443ex 449 . . . . . . . . . 10 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4516, 42, 443syl 18 . . . . . . . . 9 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 444 . . . . . . . 8 ((𝜑𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4746ad2ant2r 800 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑌𝑗) ∈ 𝐵)
483, 4ringcl 18753 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
4930, 41, 47, 48syl3anc 1473 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
503, 4ringcl 18753 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
5130, 36, 49, 50syl3anc 1473 . . . . 5 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
523, 28, 29, 29, 51gsumcom3fi 20400 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
535ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
546ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
5511ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
5613ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
57 simplr 809 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
58 simpr 479 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
597, 3, 4, 53, 54, 54, 54, 55, 56, 57, 58mamufv 20387 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))))
6059oveq1d 6820 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
61 eqid 2752 . . . . . . . 8 (0g𝑅) = (0g𝑅)
62 eqid 2752 . . . . . . . 8 (+g𝑅) = (+g𝑅)
6346adantlr 753 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
645adantr 472 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
6564ad2antrr 764 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
6632ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
67 simplr 809 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑖𝑁)
68 simpr 479 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
6966, 67, 68fovrnd 6963 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7069adantlr 753 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7138adantr 472 . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
7271ad2antrr 764 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
73 simpr 479 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
74 simplr 809 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑗𝑁)
7572, 73, 74fovrnd 6963 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
763, 4ringcl 18753 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
7765, 70, 75, 76syl3anc 1473 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
78 eqid 2752 . . . . . . . . 9 (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))
79 ovexd 6835 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ V)
80 fvexd 6356 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
8178, 54, 79, 80fsuppmptdm 8443 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) finSupp (0g𝑅))
823, 61, 62, 4, 53, 54, 63, 77, 81gsummulc1 18798 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
833, 4ringass 18756 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8430, 36, 41, 47, 83syl13anc 1475 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8584anassrs 683 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8685mpteq2dva 4888 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
8786oveq2d 6821 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8860, 82, 873eqtr2d 2792 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8988mpteq2dva 4888 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
9089oveq2d 6821 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
915ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
926ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
9312ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑍 ∈ (Base‘𝐴))
9416ad2antrr 764 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑌 ∈ (𝐵𝑚 𝑁))
951, 2, 3, 4, 91, 92, 93, 94, 68mavmulfv 20546 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
9695oveq2d 6821 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
9764ad2antrr 764 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
9871ad2antrr 764 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
99 simplr 809 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑘𝑁)
100 simpr 479 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
10198, 99, 100fovrnd 6963 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
10245ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
103102imp 444 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
10497, 101, 103, 48syl3anc 1473 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
105 eqid 2752 . . . . . . . . 9 (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))
106 ovexd 6835 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ V)
107 fvexd 6356 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
108105, 92, 106, 107fsuppmptdm 8443 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) finSupp (0g𝑅))
1093, 61, 62, 4, 91, 92, 69, 104, 108gsummulc2 18799 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
11096, 109eqtr4d 2789 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
111110mpteq2dva 4888 . . . . 5 ((𝜑𝑖𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
112111oveq2d 6821 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
11352, 90, 1123eqtr4d 2796 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
11415adantr 472 . . . 4 ((𝜑𝑖𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴))
11516adantr 472 . . . 4 ((𝜑𝑖𝑁) → 𝑌 ∈ (𝐵𝑚 𝑁))
116 simpr 479 . . . 4 ((𝜑𝑖𝑁) → 𝑖𝑁)
1171, 2, 3, 4, 64, 29, 114, 115, 116mavmulfv 20546 . . 3 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))))
1188adantr 472 . . . 4 ((𝜑𝑖𝑁) → 𝑋 ∈ (Base‘𝐴))
11921adantr 472 . . . 4 ((𝜑𝑖𝑁) → (𝑍 · 𝑌) ∈ (𝐵𝑚 𝑁))
1201, 2, 3, 4, 64, 29, 118, 119, 116mavmulfv 20546 . . 3 ((𝜑𝑖𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
121113, 117, 1203eqtr4d 2796 . 2 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖))
12220, 25, 121eqfnfvd 6469 1 (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131  Vcvv 3332  ⟨cop 4319  ⟨cotp 4321   ↦ cmpt 4873   × cxp 5256   Fn wfn 6036  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805   ↑𝑚 cmap 8015  Fincfn 8113  Basecbs 16051  +gcplusg 16135  .rcmulr 16136  0gc0g 16294   Σg cgsu 16295  CMndccmn 18385  Ringcrg 18739   maMul cmmul 20383   Mat cmat 20407   maVecMul cmvmul 20540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-hom 16160  df-cco 16161  df-0g 16296  df-gsum 16297  df-prds 16302  df-pws 16304  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-mulg 17734  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-sra 19366  df-rgmod 19367  df-dsmm 20270  df-frlm 20285  df-mamu 20384  df-mat 20408  df-mvmul 20541 This theorem is referenced by:  slesolinv  20680  slesolinvbi  20681
 Copyright terms: Public domain W3C validator