![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matvscacell | Structured version Visualization version GIF version |
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
Ref | Expression |
---|---|
matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matvscacell.k | ⊢ 𝐾 = (Base‘𝑅) |
matvscacell.v | ⊢ · = ( ·𝑠 ‘𝐴) |
matvscacell.t | ⊢ × = (.r‘𝑅) |
Ref | Expression |
---|---|
matvscacell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | matvscacell.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
4 | matvscacell.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐴) | |
5 | matvscacell.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
6 | eqid 2771 | . . . . 5 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
7 | 1, 2, 3, 4, 5, 6 | matvsca2 20451 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)) |
8 | 7 | oveqd 6813 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)𝐽)) |
9 | 8 | 3ad2ant2 1128 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)𝐽)) |
10 | df-ov 6799 | . . 3 ⊢ (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)‘〈𝐼, 𝐽〉) | |
11 | 10 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)‘〈𝐼, 𝐽〉)) |
12 | opelxpi 5287 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) | |
13 | 12 | 3ad2ant3 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) |
14 | 1, 2 | matrcl 20435 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
15 | 14 | simpld 482 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
16 | 15 | adantl 467 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
17 | 16 | 3ad2ant2 1128 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
18 | xpfi 8391 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
19 | 17, 17, 18 | syl2anc 573 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 × 𝑁) ∈ Fin) |
20 | simp2l 1241 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ 𝐾) | |
21 | 2 | eleq2i 2842 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘𝐴)) |
22 | 21 | biimpi 206 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝐴)) |
23 | 22 | adantl 467 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘𝐴)) |
24 | 23 | 3ad2ant2 1128 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ (Base‘𝐴)) |
25 | simp1 1130 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
26 | eqid 2771 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
27 | 1, 26 | matbas2 20444 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
28 | 17, 25, 27 | syl2anc 573 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
29 | 24, 28 | eleqtrrd 2853 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
30 | elmapfn 8036 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
31 | 29, 30 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) |
32 | df-ov 6799 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
33 | 32 | eqcomi 2780 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
34 | 33 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
35 | 19, 20, 31, 34 | ofc1 7071 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
36 | 13, 35 | mpdan 667 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
37 | 9, 11, 36 | 3eqtrd 2809 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Vcvv 3351 {csn 4317 〈cop 4323 × cxp 5248 Fn wfn 6025 ‘cfv 6030 (class class class)co 6796 ∘𝑓 cof 7046 ↑𝑚 cmap 8013 Fincfn 8113 Basecbs 16064 .rcmulr 16150 ·𝑠 cvsca 16153 Ringcrg 18755 Mat cmat 20430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-ot 4326 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-hom 16174 df-cco 16175 df-0g 16310 df-prds 16316 df-pws 16318 df-sra 19387 df-rgmod 19388 df-dsmm 20293 df-frlm 20308 df-mat 20431 |
This theorem is referenced by: dmatscmcl 20527 scmatscmide 20531 scmatscm 20537 mat2pmatlin 20760 monmatcollpw 20804 pmatcollpwlem 20805 chpmat1dlem 20860 chpdmatlem2 20864 chpdmatlem3 20865 |
Copyright terms: Public domain | W3C validator |