Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem1 Structured version   Visualization version   GIF version

Theorem matunitlindflem1 33535
Description: One direction of matunitlindf 33537. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Proof of Theorem matunitlindflem1
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfld 18804 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
21simplbi 475 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
3 drngring 18802 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝑅 ∈ Field → 𝑅 ∈ Ring)
5 eqid 2651 . . . . . . . . 9 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
65frlmlmod 20141 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
76adantlr 751 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
8 simpr 476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝐼 ∈ (Fin ∖ {∅}))
9 eldifi 3765 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ∈ Fin)
10 eqid 2651 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
115, 10frlmfibas 20153 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
129, 11sylan2 490 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
13 fvex 6239 . . . . . . . . . 10 (Base‘𝑅) ∈ V
14 curf 33517 . . . . . . . . . 10 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼))
1513, 14mp3an3 1453 . . . . . . . . 9 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼))
16 feq3 6066 . . . . . . . . . 10 (((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
1716biimpa 500 . . . . . . . . 9 ((((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1812, 15, 17syl2an 493 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1918anandirs 891 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
20 eqid 2651 . . . . . . . 8 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
21 eqid 2651 . . . . . . . 8 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
22 eqid 2651 . . . . . . . 8 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
23 eqid 2651 . . . . . . . 8 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
24 eqid 2651 . . . . . . . 8 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
25 eqid 2651 . . . . . . . 8 (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
2620, 21, 22, 23, 24, 25islindf4 20225 . . . . . . 7 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
277, 8, 19, 26syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
285frlmsca 20145 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2928oveq1d 6705 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
3029fveq2d 6233 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (Base‘(𝑅 freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3112, 30eqtrd 2685 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3231adantlr 751 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
33 elmapi 7921 . . . . . . . . . 10 (𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼) → 𝑓:𝐼⟶(Base‘𝑅))
34 ffn 6083 . . . . . . . . . . . . . . 15 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
3534adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼)
3619ffnd 6084 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀 Fn 𝐼)
3736adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
38 simplr 807 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
39 inidm 3855 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
40 eqidd 2652 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑓𝑛))
41 eqidd 2652 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) = (curry 𝑀𝑛))
4235, 37, 38, 38, 39, 40, 41offval 6946 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))))
43 simpllr 815 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → 𝐼 ∈ (Fin ∖ {∅}))
44 ffvelrn 6397 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4544adantll 750 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4619ffvelrnda 6399 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
4746adantlr 751 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
48 eqid 2651 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
495, 20, 10, 43, 45, 47, 22, 48frlmvscafval 20157 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = ((𝐼 × {(𝑓𝑛)}) ∘𝑓 (.r𝑅)(curry 𝑀𝑛)))
50 fvex 6239 . . . . . . . . . . . . . . . . 17 (𝑓𝑛) ∈ V
51 fnconstg 6131 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ V → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5250, 51mp1i 13 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5315ffvelrnda 6399 . . . . . . . . . . . . . . . . . . 19 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼))
54 elmapfn 7922 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5655adantlll 754 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5756adantlr 751 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5850fvconst2 6510 . . . . . . . . . . . . . . . . 17 (𝑘𝐼 → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
5958adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
60 ffn 6083 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼))
6160anim2i 592 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6261ancoms 468 . . . . . . . . . . . . . . . . . 18 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6362ad4ant23 1325 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
64 curfv 33519 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛𝐼𝑘𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
65643exp1 1305 . . . . . . . . . . . . . . . . . . 19 (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → (𝐼 ∈ (Fin ∖ {∅}) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6665com4r 94 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (Fin ∖ {∅}) → (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6766imp41 618 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6863, 67sylanl1 683 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6952, 57, 43, 43, 39, 59, 68offval 6946 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝐼 × {(𝑓𝑛)}) ∘𝑓 (.r𝑅)(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7049, 69eqtrd 2685 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7170mpteq2dva 4777 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7242, 71eqtrd 2685 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7372oveq2d 6706 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
74 simplll 813 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
75 simp-4l 823 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
7644ad4ant23 1325 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
77 fovrn 6846 . . . . . . . . . . . . . . . . 17 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7877ad5ant245 1344 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7910, 48ringcl 18607 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑓𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
8075, 76, 78, 79syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
81 eqid 2651 . . . . . . . . . . . . . . 15 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
8280, 81fmptd 6425 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
8382adantllr 755 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
84 elmapg 7912 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8513, 84mpan 706 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8685adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8712eleq2d 2716 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8886, 87bitr3d 270 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8988ad5ant13 1332 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
9083, 89mpbid 222 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
91 mptexg 6525 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
9291ralrimivw 2996 . . . . . . . . . . . . . . 15 (𝐼 ∈ (Fin ∖ {∅}) → ∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
93 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
9493fnmpt 6058 . . . . . . . . . . . . . . 15 (∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
9592, 94syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
96 fvexd 6241 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
9795, 9, 96fndmfifsupp 8329 . . . . . . . . . . . . 13 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
9897ad2antlr 763 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
995, 20, 23, 38, 38, 74, 90, 98frlmgsum 20159 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
10073, 99eqtr2d 2686 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
10133, 100sylan2 490 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
102 eqid 2651 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1035, 102frlm0 20146 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
104103ad4ant13 1315 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
105101, 104eqeq12d 2666 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼))))
10628fveq2d 6233 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (0g𝑅) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼))))
107106sneqd 4222 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → {(0g𝑅)} = {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})
108107xpeq2d 5173 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))
109108eqeq2d 2661 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
110109ad4ant13 1315 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
111105, 110imbi12d 333 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11232, 111raleqbidva 3184 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11327, 112bitr4d 271 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
114113notbid 307 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
115 rexanali 3027 . . . 4 (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})))
116114, 115syl6bbr 278 . . 3 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
1174, 116sylanl1 683 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
118 fconstfv 6517 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
119 fvex 6239 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
120119fconst2 6511 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ 𝑓 = (𝐼 × {(0g𝑅)}))
121118, 120sylbb1 227 . . . . . . . . . . 11 ((𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)) → 𝑓 = (𝐼 × {(0g𝑅)}))
122121ex 449 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (∀𝑖𝐼 (𝑓𝑖) = (0g𝑅) → 𝑓 = (𝐼 × {(0g𝑅)})))
123122con3d 148 . . . . . . . . 9 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
124 df-ne 2824 . . . . . . . . . . 11 ((𝑓𝑖) ≠ (0g𝑅) ↔ ¬ (𝑓𝑖) = (0g𝑅))
125124rexbii 3070 . . . . . . . . . 10 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅))
126 rexnal 3024 . . . . . . . . . 10 (∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
127125, 126bitri 264 . . . . . . . . 9 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
128123, 127syl6ibr 242 . . . . . . . 8 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
12934, 128syl 17 . . . . . . 7 (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
130129adantl 481 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
131 neldifsn 4354 . . . . . . . . . . 11 ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})
132 difss 3770 . . . . . . . . . . 11 (𝐼 ∖ {𝑖}) ⊆ 𝐼
133 diffi 8233 . . . . . . . . . . . . 13 (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin)
134133ad4antlr 771 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin)
135 eleq2 2719 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → (𝑖𝑦𝑖 ∈ ∅))
136135notbid 307 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ ∅))
137 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝐼 ↔ ∅ ⊆ 𝐼))
138136, 137anbi12d 747 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))
139138anbi2d 740 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))))
140 mpteq1 4770 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
141 mpt0 6059 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅
142140, 141syl6eq 2701 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅)
143142oveq2d 6706 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg ∅))
144102gsum0 17325 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
145143, 144syl6eq 2701 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (0g𝑅))
146145oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)))
147146ifeq1d 4137 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
148147mpt2eq3dv 6763 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
149148fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
150149eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
151139, 150imbi12d 333 . . . . . . . . . . . . 13 (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
152 elequ2 2044 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑖𝑦𝑖𝑥))
153152notbid 307 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (¬ 𝑖𝑦 ↔ ¬ 𝑖𝑥))
154 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐼𝑥𝐼))
155153, 154anbi12d 747 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖𝑥𝑥𝐼)))
156155anbi2d 740 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼))))
157 mpteq1 4770 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
158157oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
159158oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
160159ifeq1d 4137 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
161160mpt2eq3dv 6763 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
162161fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
163162eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
164156, 163imbi12d 333 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
165 eleq2 2719 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖𝑦𝑖 ∈ (𝑥 ∪ {𝑧})))
166165notbid 307 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧})))
167 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
168166, 167anbi12d 747 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))
169168anbi2d 740 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))))
170 mpteq1 4770 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
171170oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
172171oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
173172ifeq1d 4137 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
174173mpt2eq3dv 6763 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
175174fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
176175eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
177169, 176imbi12d 333 . . . . . . . . . . . . 13 (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
178 eleq2 2719 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖𝑦𝑖 ∈ (𝐼 ∖ {𝑖})))
179178notbid 307 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})))
180 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼))
181179, 180anbi12d 747 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))
182181anbi2d 740 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))))
183 mpteq1 4770 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
184183oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
185184oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
186185ifeq1d 4137 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
187186mpt2eq3dv 6763 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
188187fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
189188eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
190182, 189imbi12d 333 . . . . . . . . . . . . 13 (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
191 fnov 6810 . . . . . . . . . . . . . . . . . 18 (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
19260, 191sylib 208 . . . . . . . . . . . . . . . . 17 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
193192adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
194 ringgrp 18598 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1954, 194syl 17 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Field → 𝑅 ∈ Grp)
196 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
197196equcoms 1993 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
198197oveq2d 6706 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)))
199 simp1l 1105 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → 𝑅 ∈ Grp)
200 fovrn 6846 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
2012003adant1l 1358 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
202 eqid 2651 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑅) = (+g𝑅)
20310, 202, 102grplid 17499 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
204199, 201, 203syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
205198, 204sylan9eqr 2707 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ 𝑗 = 𝑖) → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘))
206 eqidd 2652 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘))
207205, 206ifeqda 4154 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
208207mpt2eq3dva 6761 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
209195, 208sylan 487 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
210193, 209eqtr4d 2688 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
211210fveq2d 6233 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
212211ad4antr 769 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
213 elun1 3813 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑥𝑖 ∈ (𝑥 ∪ {𝑧}))
214213con3i 150 . . . . . . . . . . . . . . . . . . . 20 𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖𝑥)
215 ssun1 3809 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {𝑧})
216 sstr 3644 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
217215, 216mpan 706 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
218214, 217anim12i 589 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖𝑥𝑥𝐼))
219218anim2i 592 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
220219adantr 480 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
221 velsn 4226 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
222 elun2 3814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧}))
223221, 222sylbir 225 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑧𝑖 ∈ (𝑥 ∪ {𝑧}))
224223necon3bi 2849 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖𝑧)
225224anim1i 591 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
226 ringcmn 18627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2274, 226syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Field → 𝑅 ∈ CMnd)
228227ad7antr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
229 simplr 807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
230217adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
231 ssfi 8221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → 𝑥 ∈ Fin)
232229, 230, 231syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
233232ad5ant13 1332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑥 ∈ Fin)
234217sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑛𝑥) → 𝑛𝐼)
235234adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
236235ad4ant24 1327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
2374ad6antr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → 𝑅 ∈ Ring)
2382ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
239 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
240239anim2i 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
241240anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
242 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (invr𝑅) = (invr𝑅)
24310, 102, 242drnginvrcl 18812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
2442433expa 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
245241, 244sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
246245anasss 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
247238, 246sylanl1 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
248247ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
24944ad5ant25 1342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
250 simp-4r 824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
251773expa 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
252251an32s 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
253250, 252sylanl1 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
254237, 249, 253, 79syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
25510, 48ringcl 18607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
256237, 248, 254, 255syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
257256adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
258236, 257syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
259258adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
260 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 ∈ V
261260a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑧 ∈ V)
262 simplr 807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ¬ 𝑧𝑥)
263 ssun2 3810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑧} ⊆ (𝑥 ∪ {𝑧})
264 sstr 3644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼)
265263, 264mpan 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼)
266260snss 4348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
267265, 266sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑧𝐼)
268267adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧𝐼)
2694ad6antr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
2704ad5antr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → 𝑅 ∈ Ring)
271247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
272 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
273272ad4ant24 1327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
27410, 48ringcl 18607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
275270, 271, 273, 274syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
276275adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
277 fovrn 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
2782773expa 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
279250, 278sylanl1 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
28010, 48ringcl 18607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
281269, 276, 279, 280syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
282268, 281sylanl2 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
283282adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
284 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑓𝑛) = (𝑓𝑧))
285 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘))
286284, 285oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 = 𝑧 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘)))
287286oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑧 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
288247ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
289272ad5ant24 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
29010, 48ringass 18610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
291269, 288, 289, 279, 290syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
292291eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
293268, 292sylanl2 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
294287, 293sylan9eqr 2707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
295294adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
29610, 202, 228, 233, 259, 261, 262, 283, 295gsumunsnd 18403 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
297296oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)))
298 ringabl 18626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2994, 298syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Field → 𝑅 ∈ Abel)
300299ad6antr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Abel)
301227ad6antr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
302 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑥 ∈ V
303302a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑥 ∈ V)
304 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥𝐼𝑛𝑥) → 𝑛𝐼)
305304, 256sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑥𝐼𝑛𝑥)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
306305anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
307 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
308306, 307fmptd 6425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
309308an32s 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
310 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V
311310, 307fnmpti 6060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥
312311a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥)
313 fvexd 6241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (0g𝑅) ∈ V)
314312, 231, 313fndmfifsupp 8329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
315314adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
316315ad5ant14 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
31710, 102, 301, 303, 309, 316gsumcl 18362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
318217, 317sylanl2 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
319267, 281sylanl2 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
320 simpllr 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
321 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅)) → 𝑖𝐼)
322320, 321anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
323322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
324 fovrn 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
3253243expa 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
326323, 325sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
32710, 202, 300, 318, 319, 326abl32 18260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
328327adantlrl 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
329328adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
330297, 329eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
331330ifeq1d 4137 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
3323313adant2 1100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
333332mpt2eq3dva 6761 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))
334333fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
335 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
3361simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ Field → 𝑅 ∈ CRing)
337336ad5antr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing)
338 simp-4r 824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin)
339195ad6antr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Grp)
340322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
341340, 325sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
34210, 202grpcl 17477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
343339, 317, 341, 342syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
344230, 343sylanl2 684 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
345250, 268anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼))
346345, 278sylan 487 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
347 simp-5r 826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
348347, 200syl3an1 1399 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
349268, 275sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
350 simplrl 817 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝐼)
351267ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
352 simprl 809 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝑧)
353335, 10, 202, 48, 337, 338, 344, 346, 348, 349, 350, 351, 352mdetero 20464 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
354353adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
355334, 354eqtrd 2685 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
356 iftrue 4125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘))
357 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘))
358356, 357eqtr4d 2688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
359 iffalse 4128 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
360358, 359pm2.61i 176 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)
361 ifeq2 4124 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
362360, 361mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
363362mpt2eq3ia 6762 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
364363fveq2i 6232 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
365 ifeq2 4124 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
366360, 365mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
367366mpt2eq3ia 6762 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
368367fveq2i 6232 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
369355, 364, 3683eqtr3g 2708 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
370225, 369sylanl2 684 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
371370eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
372371biimprd 238 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
373220, 372embantd 59 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
374373expcom 450 . . . . . . . . . . . . . . 15 𝑧𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
375374com23 86 . . . . . . . . . . . . . 14 𝑧𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
376375adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
377151, 164, 177, 190, 212, 376findcard2s 8242 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
378134, 377mpcom 38 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
379131, 132, 378mpanr12 721 . . . . . . . . . 10 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
380379adantlr 751 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
381 eqid 2651 . . . . . . . . . . . 12 𝐼 = 𝐼
382 fconstmpt 5197 . . . . . . . . . . . . . . . . 17 (𝐼 × {(0g𝑅)}) = (𝑘𝐼 ↦ (0g𝑅))
383382eqeq2i 2663 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)))
384 ovex 6718 . . . . . . . . . . . . . . . . . 18 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
385384rgenw 2953 . . . . . . . . . . . . . . . . 17 𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
386 mpteqb 6338 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)))
387385, 386ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
388383, 387bitri 264 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
389227ad5antr 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
390 simp-4r 824 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
391 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
392310, 391fnmpti 6060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼
393392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
394 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
395 fvexd 6241 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (0g𝑅) ∈ V)
396393, 394, 395fndmfifsupp 8329 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
397396ad4antlr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
398 simplrl 817 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑖𝐼)
399322, 325sylan 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
400 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
401 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘))
402400, 401oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘)))
403402oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
404 simpll 805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field)
4052, 239anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
406405anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
407 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1r𝑅) = (1r𝑅)
40810, 102, 48, 407, 242drnginvrl 18814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
4094083expa 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
410406, 409sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
411410anasss 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
412411oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
413404, 412sylanl1 683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
414413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
4154ad5antr 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
416247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
417239ad2ant2lr 799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑓𝑖) ∈ (Base‘𝑅))
418417adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
41910, 48ringass 18610 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
420415, 416, 418, 399, 419syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
4214adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
4224213ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → 𝑅 ∈ Ring)
4233243adant1l 1358 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
42410, 48, 407ringlidm 18617 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
425422, 423, 424syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
426425ad5ant145 1355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
427426adantlrr 757 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
428414, 420, 4273eqtr3d 2693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘))
429403, 428sylan9eqr 2707 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑖) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘))
43010, 202, 389, 390, 397, 256, 398, 399, 429gsumdifsnd 18406 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
431 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ V
432 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
433431, 432fnmpti 6060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼
434433a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼)
435434, 394, 395fndmfifsupp 8329 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
436435ad4antlr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
43710, 102, 202, 48, 415, 390, 416, 254, 436gsummulc2 18653 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
438430, 437eqtr3d 2687 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
439438adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
440 oveq2 6698 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
441440adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
4424ad4antr 769 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ Ring)
44310, 48, 102ringrz 18634 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
444442, 247, 443syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
445444ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
446439, 441, 4453eqtrd 2689 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (0g𝑅))
447446ifeq1d 4137 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
448447ex 449 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
449448ralimdva 2991 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
450449imp 444 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
451388, 450sylan2b 491 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
452451, 381jctil 559 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
453452ralrimivw 2996 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
454 mpt2eq123 6756 . . . . . . . . . . . 12 ((𝐼 = 𝐼 ∧ ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
455381, 453, 454sylancr 696 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
456455an32s 863 . . . . . . . . . 10 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
457456fveq2d 6233 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))))
458336ad3antrrr 766 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ CRing)
459 simplr 807 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝐼 ∈ Fin)
460 simpllr 815 . . . . . . . . . . . 12 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
461460, 200syl3an1 1399 . . . . . . . . . . 11 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
462 simprl 809 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑖𝐼)
463335, 10, 102, 458, 459, 461, 462mdetr0 20459 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
464463ad4ant14 1317 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
465380, 457, 4643eqtrd 2689 . . . . . . . 8 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅))
466465rexlimdvaa 3061 . . . . . . 7 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
467466expimpd 628 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
468130, 467sylan2d 498 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
46933, 468sylan2 490 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
470469rexlimdva 3060 . . 3 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
4719, 470sylan2 490 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
472117, 471sylbid 230 1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑓 cof 6937  curry ccur 7436  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  Grpcgrp 17469  CMndccmn 18239  Abelcabl 18240  1rcur 18547  Ringcrg 18593  CRingccrg 18594  invrcinvr 18717  DivRingcdr 18795  Fieldcfield 18796  LModclmod 18911   freeLMod cfrlm 20138   LIndF clindf 20191   maDet cmdat 20438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-cur 7438  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957  df-evpm 17958  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lmhm 19070  df-lbs 19123  df-sra 19220  df-rgmod 19221  df-nzr 19306  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-dsmm 20124  df-frlm 20139  df-uvc 20170  df-lindf 20193  df-mat 20262  df-mdet 20439
This theorem is referenced by:  matunitlindf  33537
  Copyright terms: Public domain W3C validator