Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindf Structured version   Visualization version   GIF version

Theorem matunitlindf 33739
Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindf ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Proof of Theorem matunitlindf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6822 . . . . . . . . 9 (𝐼 = ∅ → (𝐼 Mat 𝑅) = (∅ Mat 𝑅))
21fveq2d 6358 . . . . . . . 8 (𝐼 = ∅ → (Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
3 mat0dimbas0 20495 . . . . . . . 8 (𝑅 ∈ Field → (Base‘(∅ Mat 𝑅)) = {∅})
42, 3sylan9eq 2815 . . . . . . 7 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (Base‘(𝐼 Mat 𝑅)) = {∅})
54eleq2d 2826 . . . . . 6 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅}))
6 elsni 4339 . . . . . 6 (𝑀 ∈ {∅} → 𝑀 = ∅)
75, 6syl6bi 243 . . . . 5 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅))
87imdistanda 731 . . . 4 (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅)))
98impcom 445 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅))
10 isfld 18979 . . . . . . . 8 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1110simplbi 478 . . . . . . 7 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
12 drngring 18977 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
13 eqid 2761 . . . . . . . . 9 (∅ Mat 𝑅) = (∅ Mat 𝑅)
1413mat0dimid 20497 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅)
15 0fin 8356 . . . . . . . . . 10 ∅ ∈ Fin
1613matring 20472 . . . . . . . . . 10 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ Mat 𝑅) ∈ Ring)
1715, 16mpan 708 . . . . . . . . 9 (𝑅 ∈ Ring → (∅ Mat 𝑅) ∈ Ring)
18 eqid 2761 . . . . . . . . . 10 (Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))
19 eqid 2761 . . . . . . . . . 10 (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅))
2018, 191unit 18879 . . . . . . . . 9 ((∅ Mat 𝑅) ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2117, 20syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2214, 21eqeltrrd 2841 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
2311, 12, 223syl 18 . . . . . 6 (𝑅 ∈ Field → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
24 f0 6248 . . . . . . . . 9 ∅:∅⟶(Base‘(𝑅 freeLMod ∅))
25 dm0 5495 . . . . . . . . . 10 dom ∅ = ∅
2625feq2i 6199 . . . . . . . . 9 (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔ ∅:∅⟶(Base‘(𝑅 freeLMod ∅)))
2724, 26mpbir 221 . . . . . . . 8 ∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅))
28 rzal 4218 . . . . . . . . 9 (dom ∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))
2925, 28ax-mp 5 . . . . . . . 8 𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))
30 ovex 6843 . . . . . . . . 9 (𝑅 freeLMod ∅) ∈ V
31 eqid 2761 . . . . . . . . . 10 (Base‘(𝑅 freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅))
32 eqid 2761 . . . . . . . . . 10 ( ·𝑠 ‘(𝑅 freeLMod ∅)) = ( ·𝑠 ‘(𝑅 freeLMod ∅))
33 eqid 2761 . . . . . . . . . 10 (LSpan‘(𝑅 freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅))
34 eqid 2761 . . . . . . . . . 10 (Scalar‘(𝑅 freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅))
35 eqid 2761 . . . . . . . . . 10 (Base‘(Scalar‘(𝑅 freeLMod ∅))) = (Base‘(Scalar‘(𝑅 freeLMod ∅)))
36 eqid 2761 . . . . . . . . . 10 (0g‘(Scalar‘(𝑅 freeLMod ∅))) = (0g‘(Scalar‘(𝑅 freeLMod ∅)))
3731, 32, 33, 34, 35, 36islindf 20374 . . . . . . . . 9 (((𝑅 freeLMod ∅) ∈ V ∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))))
3830, 15, 37mp2an 710 . . . . . . . 8 (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))
3927, 29, 38mpbir2an 993 . . . . . . 7 ∅ LIndF (𝑅 freeLMod ∅)
4039a1i 11 . . . . . 6 (𝑅 ∈ Field → ∅ LIndF (𝑅 freeLMod ∅))
4123, 402thd 255 . . . . 5 (𝑅 ∈ Field → (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
421fveq2d 6358 . . . . . . . 8 (𝐼 = ∅ → (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)))
43 eleq12 2830 . . . . . . . 8 ((𝑀 = ∅ ∧ (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
4442, 43sylan2 492 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
45 cureq 33717 . . . . . . . . 9 (𝑀 = ∅ → curry 𝑀 = curry ∅)
46 df-cur 7564 . . . . . . . . . 10 curry ∅ = (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
4725dmeqi 5481 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
4847, 25eqtri 2783 . . . . . . . . . . 11 dom dom ∅ = ∅
49 mpteq1 4890 . . . . . . . . . . 11 (dom dom ∅ = ∅ → (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}))
5048, 49ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
51 mpt0 6183 . . . . . . . . . 10 (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = ∅
5246, 50, 513eqtri 2787 . . . . . . . . 9 curry ∅ = ∅
5345, 52syl6eq 2811 . . . . . . . 8 (𝑀 = ∅ → curry 𝑀 = ∅)
54 oveq2 6823 . . . . . . . 8 (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅))
5553, 54breqan12d 4821 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
5644, 55bibi12d 334 . . . . . 6 ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))))
5756biimparc 505 . . . . 5 (((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5841, 57sylan 489 . . . 4 ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5958anassrs 683 . . 3 (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
609, 59sylancom 704 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
6110simprbi 483 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
62 eqid 2761 . . . . . 6 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
63 eqid 2761 . . . . . 6 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
64 eqid 2761 . . . . . 6 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
65 eqid 2761 . . . . . 6 (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(𝐼 Mat 𝑅))
66 eqid 2761 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
6762, 63, 64, 65, 66matunit 20707 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6861, 67sylan 489 . . . 4 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6968adantr 472 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
70 eqid 2761 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
71 eqid 2761 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
7270, 66, 71drngunit 18975 . . . . . . . . 9 (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7311, 72syl 17 . . . . . . . 8 (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7473adantr 472 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7563, 62, 64, 70mdetcl 20625 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7661, 75sylan 489 . . . . . . . 8 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7776biantrurd 530 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7874, 77bitr4d 271 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7978adantr 472 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
8062, 64matrcl 20441 . . . . . . . . . . . 12 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
8180simpld 477 . . . . . . . . . . 11 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
8281pm4.71i 667 . . . . . . . . . 10 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin))
83 xpfi 8399 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
8483anidms 680 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
85 eqid 2761 . . . . . . . . . . . . . . . . 17 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
8685, 70frlmfibas 20328 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8784, 86sylan2 492 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8862, 85matbas 20442 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8988ancoms 468 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
9087, 89eqtrd 2795 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
9190eleq2d 2826 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
92 fvex 6364 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
93 elmapg 8039 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9492, 84, 93sylancr 698 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9594adantl 473 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9691, 95bitr3d 270 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9796ex 449 . . . . . . . . . . 11 (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))))
9897pm5.32rd 675 . . . . . . . . . 10 (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9982, 98syl5bb 272 . . . . . . . . 9 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
10099biimpd 219 . . . . . . . 8 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
101100imdistani 728 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
102 anass 684 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
103101, 102sylibr 224 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin))
104 eldifsn 4463 . . . . . . . 8 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
105 matunitlindflem1 33737 . . . . . . . . 9 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
106105necon1ad 2950 . . . . . . . 8 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
107104, 106sylan2br 494 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
108107anassrs 683 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
109103, 108sylan 489 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11079, 109sylbid 230 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
111 matunitlindflem2 33738 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
112111ex 449 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
113110, 112impbid 202 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11469, 113bitrd 268 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11560, 114pm2.61dane 3020 1 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wne 2933  wral 3051  Vcvv 3341  cdif 3713  c0 4059  {csn 4322  cop 4328   class class class wbr 4805  {copab 4865  cmpt 4882   × cxp 5265  dom cdm 5267  cima 5270  wf 6046  cfv 6050  (class class class)co 6815  curry ccur 7562  𝑚 cmap 8026  Fincfn 8124  Basecbs 16080  Scalarcsca 16167   ·𝑠 cvsca 16168  0gc0g 16323  1rcur 18722  Ringcrg 18768  CRingccrg 18769  Unitcui 18860  DivRingcdr 18970  Fieldcfield 18971  LSpanclspn 19194   freeLMod cfrlm 20313   LIndF clindf 20366   Mat cmat 20436   maDet cmdat 20613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-ot 4331  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-tpos 7523  df-cur 7564  df-unc 7565  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-xnn0 11577  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-splice 13511  df-reverse 13512  df-s2 13814  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-mri 16471  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-gim 17923  df-cntz 17971  df-oppg 17997  df-symg 18019  df-pmtr 18083  df-psgn 18132  df-evpm 18133  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-srg 18727  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-rnghom 18938  df-drng 18972  df-field 18973  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19195  df-lmhm 19245  df-lbs 19298  df-lvec 19326  df-sra 19395  df-rgmod 19396  df-nzr 19481  df-assa 19535  df-cnfld 19970  df-zring 20042  df-zrh 20075  df-dsmm 20299  df-frlm 20314  df-uvc 20345  df-lindf 20368  df-linds 20369  df-mamu 20413  df-mat 20437  df-mdet 20614  df-madu 20663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator