Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mattposcl Structured version   Visualization version   GIF version

Theorem mattposcl 20481
 Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mattposcl.a 𝐴 = (𝑁 Mat 𝑅)
mattposcl.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
mattposcl (𝑀𝐵 → tpos 𝑀𝐵)

Proof of Theorem mattposcl
StepHypRef Expression
1 mattposcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2760 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 mattposcl.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3matbas2i 20450 . . . 4 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
5 elmapi 8047 . . . 4 (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6 tposf 7550 . . . 4 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
74, 5, 63syl 18 . . 3 (𝑀𝐵 → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8 fvex 6363 . . . 4 (Base‘𝑅) ∈ V
91, 3matrcl 20440 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 477 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
11 xpfi 8398 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1211anidms 680 . . . . 5 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
1310, 12syl 17 . . . 4 (𝑀𝐵 → (𝑁 × 𝑁) ∈ Fin)
14 elmapg 8038 . . . 4 (((Base‘𝑅) ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)))
158, 13, 14sylancr 698 . . 3 (𝑀𝐵 → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)))
167, 15mpbird 247 . 2 (𝑀𝐵 → tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
171, 2matbas2 20449 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
189, 17syl 17 . . 3 (𝑀𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
1918, 3syl6eqr 2812 . 2 (𝑀𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵)
2016, 19eleqtrd 2841 1 (𝑀𝐵 → tpos 𝑀𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   × cxp 5264  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  tpos ctpos 7521   ↑𝑚 cmap 8025  Fincfn 8123  Basecbs 16079   Mat cmat 20435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-prds 16330  df-pws 16332  df-sra 19394  df-rgmod 19395  df-dsmm 20298  df-frlm 20313  df-mat 20436 This theorem is referenced by:  mattposvs  20483  mdettpos  20639  madutpos  20670  madulid  20673  mdetpmtr2  30220
 Copyright terms: Public domain W3C validator