![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattposcl | Structured version Visualization version GIF version |
Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mattposcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattposcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
mattposcl | ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mattposcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2760 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mattposcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | matbas2i 20450 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
5 | elmapi 8047 | . . . 4 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
6 | tposf 7550 | . . . 4 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
8 | fvex 6363 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
9 | 1, 3 | matrcl 20440 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 477 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | xpfi 8398 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
12 | 11 | anidms 680 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
14 | elmapg 8038 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) | |
15 | 8, 13, 14 | sylancr 698 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) |
16 | 7, 15 | mpbird 247 | . 2 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
17 | 1, 2 | matbas2 20449 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
18 | 9, 17 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
19 | 18, 3 | syl6eqr 2812 | . 2 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵) |
20 | 16, 19 | eleqtrd 2841 | 1 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 × cxp 5264 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 tpos ctpos 7521 ↑𝑚 cmap 8025 Fincfn 8123 Basecbs 16079 Mat cmat 20435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-tpos 7522 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-prds 16330 df-pws 16332 df-sra 19394 df-rgmod 19395 df-dsmm 20298 df-frlm 20313 df-mat 20436 |
This theorem is referenced by: mattposvs 20483 mdettpos 20639 madutpos 20670 madulid 20673 mdetpmtr2 30220 |
Copyright terms: Public domain | W3C validator |