MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsc Structured version   Visualization version   GIF version

Theorem matsc 20450
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
matsc.a 𝐴 = (𝑁 Mat 𝑅)
matsc.k 𝐾 = (Base‘𝑅)
matsc.m · = ( ·𝑠𝐴)
matsc.z 0 = (0g𝑅)
Assertion
Ref Expression
matsc ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Distinct variable groups:   𝑖,𝑗, 0   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖,𝑗   𝑖,𝐿,𝑗   𝑖,𝐾,𝑗

Proof of Theorem matsc
StepHypRef Expression
1 simp3 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝐿𝐾)
2 3simpa 1142 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3 matsc.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 20443 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 eqid 2752 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 eqid 2752 . . . . 5 (1r𝐴) = (1r𝐴)
75, 6ringidcl 18760 . . . 4 (𝐴 ∈ Ring → (1r𝐴) ∈ (Base‘𝐴))
82, 4, 73syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) ∈ (Base‘𝐴))
9 matsc.k . . . 4 𝐾 = (Base‘𝑅)
10 matsc.m . . . 4 · = ( ·𝑠𝐴)
11 eqid 2752 . . . 4 (.r𝑅) = (.r𝑅)
12 eqid 2752 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
133, 5, 9, 10, 11, 12matvsca2 20428 . . 3 ((𝐿𝐾 ∧ (1r𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)))
141, 8, 13syl2anc 696 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)))
15 simp1 1130 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝑁 ∈ Fin)
16 simp13 1245 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → 𝐿𝐾)
17 fvex 6354 . . . . 5 (1r𝑅) ∈ V
18 matsc.z . . . . . 6 0 = (0g𝑅)
19 fvex 6354 . . . . . 6 (0g𝑅) ∈ V
2018, 19eqeltri 2827 . . . . 5 0 ∈ V
2117, 20ifex 4292 . . . 4 if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V
2221a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V)
23 fconstmpt2 6912 . . . 4 ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿)
2423a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿))
25 eqid 2752 . . . . 5 (1r𝑅) = (1r𝑅)
263, 25, 18mat1 20447 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
27263adant3 1126 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
2815, 15, 16, 22, 24, 27offval22 7413 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r𝑅)(1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))))
29 ovif2 6895 . . . 4 (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 ))
309, 11, 25ringridm 18764 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
31303adant1 1124 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
329, 11, 18ringrz 18780 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
33323adant1 1124 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
3431, 33ifeq12d 4242 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3529, 34syl5eq 2798 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3635mpt2eq3dv 6878 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
3714, 28, 363eqtrd 2790 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  Vcvv 3332  ifcif 4222  {csn 4313   × cxp 5256  cfv 6041  (class class class)co 6805  cmpt2 6807  𝑓 cof 7052  Fincfn 8113  Basecbs 16051  .rcmulr 16136   ·𝑠 cvsca 16139  0gc0g 16294  1rcur 18693  Ringcrg 18739   Mat cmat 20407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-hom 16160  df-cco 16161  df-0g 16296  df-gsum 16297  df-prds 16302  df-pws 16304  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-subrg 18972  df-lmod 19059  df-lss 19127  df-sra 19366  df-rgmod 19367  df-dsmm 20270  df-frlm 20285  df-mamu 20384  df-mat 20408
This theorem is referenced by:  scmatscm  20513  madurid  20644  chmatval  20828
  Copyright terms: Public domain W3C validator