![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matplusgcell | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusgcell.p | ⊢ ✚ = (+g‘𝐴) |
matplusgcell.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusgcell | ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | matplusgcell.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
4 | matplusgcell.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
5 | 1, 2, 3, 4 | matplusg2 20455 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) |
6 | 5 | oveqd 6831 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘𝑓 + 𝑌)𝐽)) |
7 | 6 | adantr 472 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘𝑓 + 𝑌)𝐽)) |
8 | df-ov 6817 | . . 3 ⊢ (𝐼(𝑋 ∘𝑓 + 𝑌)𝐽) = ((𝑋 ∘𝑓 + 𝑌)‘〈𝐼, 𝐽〉) | |
9 | 8 | a1i 11 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ∘𝑓 + 𝑌)𝐽) = ((𝑋 ∘𝑓 + 𝑌)‘〈𝐼, 𝐽〉)) |
10 | opelxp 5303 | . . 3 ⊢ (〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁) ↔ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
11 | eqid 2760 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | matbas2i 20450 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
13 | elmapfn 8048 | . . . . . 6 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
15 | 14 | adantr 472 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 Fn (𝑁 × 𝑁)) |
16 | 1, 11, 2 | matbas2i 20450 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
17 | elmapfn 8048 | . . . . . 6 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
19 | 18 | adantl 473 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 Fn (𝑁 × 𝑁)) |
20 | 1, 2 | matrcl 20440 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
21 | xpfi 8398 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
22 | 21 | anidms 680 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
23 | 22 | adantr 472 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin) |
24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
25 | 24 | adantr 472 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
26 | inidm 3965 | . . . 4 ⊢ ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁) | |
27 | df-ov 6817 | . . . . . 6 ⊢ (𝐼𝑋𝐽) = (𝑋‘〈𝐼, 𝐽〉) | |
28 | 27 | eqcomi 2769 | . . . . 5 ⊢ (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽) |
29 | 28 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽)) |
30 | df-ov 6817 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
31 | 30 | eqcomi 2769 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
32 | 31 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
33 | 15, 19, 25, 25, 26, 29, 32 | ofval 7072 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((𝑋 ∘𝑓 + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
34 | 10, 33 | sylan2br 494 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑋 ∘𝑓 + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
35 | 7, 9, 34 | 3eqtrd 2798 | 1 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 × cxp 5264 Fn wfn 6044 ‘cfv 6049 (class class class)co 6814 ∘𝑓 cof 7061 ↑𝑚 cmap 8025 Fincfn 8123 Basecbs 16079 +gcplusg 16163 Mat cmat 20435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-prds 16330 df-pws 16332 df-sra 19394 df-rgmod 19395 df-dsmm 20298 df-frlm 20313 df-mat 20436 |
This theorem is referenced by: mat1ghm 20511 cpmatacl 20743 mat2pmatghm 20757 pm2mpghm 20843 |
Copyright terms: Public domain | W3C validator |