MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matlmod Structured version   Visualization version   GIF version

Theorem matlmod 20452
Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
matlmod.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matlmod ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)

Proof of Theorem matlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqxpexg 7110 . . 3 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
2 eqid 2771 . . . . 5 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
32frlmlmod 20310 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 × 𝑁) ∈ V) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod)
43ancoms 455 . . 3 (((𝑁 × 𝑁) ∈ V ∧ 𝑅 ∈ Ring) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod)
51, 4sylan 569 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod)
6 eqidd 2772 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
7 matlmod.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
87, 2matbas 20436 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
97, 2matplusg 20437 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
109oveqdr 6819 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))) → (𝑥(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑦) = (𝑥(+g𝐴)𝑦))
11 eqidd 2772 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))))
127, 2matsca 20438 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘𝐴))
13 eqid 2771 . . 3 (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))))
147, 2matvsca 20439 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
1514oveqdr 6819 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
166, 8, 10, 11, 12, 13, 15lmodpropd 19136 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod ↔ 𝐴 ∈ LMod))
175, 16mpbid 222 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351   × cxp 5247  cfv 6031  (class class class)co 6793  Fincfn 8109  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  Ringcrg 18755  LModclmod 19073   freeLMod cfrlm 20307   Mat cmat 20430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-0g 16310  df-prds 16316  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-subrg 18988  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-dsmm 20293  df-frlm 20308  df-mat 20431
This theorem is referenced by:  matgrp  20453  matvscl  20454  matassa  20467  mat0dimscm  20493  scmatid  20538  scmataddcl  20540  scmatsubcl  20541  smatvscl  20548  scmatghm  20557  scmatmhm  20558  pmatlmod  20719  pm2mp  20850  chpmat1dlem  20860  chpmat1d  20861  cpmidpmatlem3  20897  cpmadugsumlemB  20899  cpmadugsumlemC  20900  chcoeffeqlem  20910
  Copyright terms: Public domain W3C validator