Step | Hyp | Ref
| Expression |
1 | | matgsum.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
2 | | mptexg 6650 |
. . . 4
⊢ (𝐽 ∈ 𝑊 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) ∈ V) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) ∈ V) |
4 | | matgsum.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
5 | | ovex 6843 |
. . . . 5
⊢ (𝑁 Mat 𝑅) ∈ V |
6 | 4, 5 | eqeltri 2836 |
. . . 4
⊢ 𝐴 ∈ V |
7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 ∈ V) |
8 | | ovexd 6845 |
. . 3
⊢ (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V) |
9 | | matgsum.i |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
10 | | matgsum.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | | eqid 2761 |
. . . . . 6
⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) |
12 | 4, 11 | matbas 20442 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘(𝑅 freeLMod
(𝑁 × 𝑁))) = (Base‘𝐴)) |
13 | 9, 10, 12 | syl2anc 696 |
. . . 4
⊢ (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
14 | 13 | eqcomd 2767 |
. . 3
⊢ (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
15 | 4, 11 | matplusg 20443 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(+g‘(𝑅
freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
16 | 9, 10, 15 | syl2anc 696 |
. . . 4
⊢ (𝜑 →
(+g‘(𝑅
freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
17 | 16 | eqcomd 2767 |
. . 3
⊢ (𝜑 → (+g‘𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
18 | 3, 7, 8, 14, 17 | gsumpropd 17494 |
. 2
⊢ (𝜑 → (𝐴 Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)))) |
19 | | mpt2mpts 7404 |
. . . . . 6
⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) |
20 | 19 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) |
21 | 20 | mpteq2dv 4898 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) = (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈))) |
22 | 21 | oveq2d 6831 |
. . 3
⊢ (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)))) |
23 | | eqid 2761 |
. . . 4
⊢
(Base‘(𝑅
freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) |
24 | | eqid 2761 |
. . . 4
⊢
(0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) |
25 | | xpfi 8399 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) |
26 | 9, 9, 25 | syl2anc 696 |
. . . 4
⊢ (𝜑 → (𝑁 × 𝑁) ∈ Fin) |
27 | | matgsum.f |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) ∈ 𝐵) |
28 | | matgsum.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
29 | 27, 28 | syl6eleq 2850 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) ∈ (Base‘𝐴)) |
30 | 19 | eqcomi 2770 |
. . . . . 6
⊢ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) |
31 | 30 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) |
32 | 9, 10 | jca 555 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
33 | 32 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
34 | 33, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
35 | 29, 31, 34 | 3eltr4d 2855 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
36 | | matgsum.w |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) finSupp 0 ) |
37 | 30 | mpteq2i 4894 |
. . . . . 6
⊢ (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) = (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) |
38 | | matgsum.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐴) |
39 | 38 | eqcomi 2770 |
. . . . . 6
⊢
(0g‘𝐴) = 0 |
40 | 36, 37, 39 | 3brtr4g 4839 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) finSupp (0g‘𝐴)) |
41 | 4, 11 | mat0 20446 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘(𝑅
freeLMod (𝑁 × 𝑁))) = (0g‘𝐴)) |
42 | 9, 10, 41 | syl2anc 696 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝑅
freeLMod (𝑁 × 𝑁))) = (0g‘𝐴)) |
43 | 40, 42 | breqtrrd 4833 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
44 | 11, 23, 24, 26, 1, 10, 35, 43 | frlmgsum 20334 |
. . 3
⊢ (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦 ∈ 𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)))) |
45 | 22, 44 | eqtrd 2795 |
. 2
⊢ (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)))) |
46 | | fvex 6364 |
. . . . . . . 8
⊢
(2nd ‘𝑧) ∈ V |
47 | | csbov2g 6856 |
. . . . . . . 8
⊢
((2nd ‘𝑧) ∈ V →
⦋(2nd ‘𝑧) / 𝑗⦌(𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = (𝑅 Σg
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈))) |
48 | 46, 47 | ax-mp 5 |
. . . . . . 7
⊢
⦋(2nd ‘𝑧) / 𝑗⦌(𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = (𝑅 Σg
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) |
49 | 48 | csbeq2i 4137 |
. . . . . 6
⊢
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑅 Σg
(𝑦 ∈ 𝐽 ↦ 𝑈)) = ⦋(1st
‘𝑧) / 𝑖⦌(𝑅 Σg
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) |
50 | | fvex 6364 |
. . . . . . 7
⊢
(1st ‘𝑧) ∈ V |
51 | | csbov2g 6856 |
. . . . . . 7
⊢
((1st ‘𝑧) ∈ V →
⦋(1st ‘𝑧) / 𝑖⦌(𝑅 Σg
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) = (𝑅 Σg
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈))) |
52 | 50, 51 | ax-mp 5 |
. . . . . 6
⊢
⦋(1st ‘𝑧) / 𝑖⦌(𝑅 Σg
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) = (𝑅 Σg
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) |
53 | | csbmpt2 5162 |
. . . . . . . . . 10
⊢
((2nd ‘𝑧) ∈ V →
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈) = (𝑦 ∈ 𝐽 ↦ ⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) |
54 | 46, 53 | ax-mp 5 |
. . . . . . . . 9
⊢
⦋(2nd ‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈) = (𝑦 ∈ 𝐽 ↦ ⦋(2nd
‘𝑧) / 𝑗⦌𝑈) |
55 | 54 | csbeq2i 4137 |
. . . . . . . 8
⊢
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈) = ⦋(1st
‘𝑧) / 𝑖⦌(𝑦 ∈ 𝐽 ↦ ⦋(2nd
‘𝑧) / 𝑗⦌𝑈) |
56 | | csbmpt2 5162 |
. . . . . . . . 9
⊢
((1st ‘𝑧) ∈ V →
⦋(1st ‘𝑧) / 𝑖⦌(𝑦 ∈ 𝐽 ↦ ⦋(2nd
‘𝑧) / 𝑗⦌𝑈) = (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) |
57 | 50, 56 | ax-mp 5 |
. . . . . . . 8
⊢
⦋(1st ‘𝑧) / 𝑖⦌(𝑦 ∈ 𝐽 ↦ ⦋(2nd
‘𝑧) / 𝑗⦌𝑈) = (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) |
58 | 55, 57 | eqtri 2783 |
. . . . . . 7
⊢
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈) = (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈) |
59 | 58 | oveq2i 6826 |
. . . . . 6
⊢ (𝑅 Σg
⦋(1st ‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑦 ∈ 𝐽 ↦ 𝑈)) = (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) |
60 | 49, 52, 59 | 3eqtrri 2788 |
. . . . 5
⊢ (𝑅 Σg
(𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈)) = ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑅 Σg
(𝑦 ∈ 𝐽 ↦ 𝑈)) |
61 | 60 | mpteq2i 4894 |
. . . 4
⊢ (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑅 Σg
(𝑦 ∈ 𝐽 ↦ 𝑈))) |
62 | | mpt2mpts 7404 |
. . . 4
⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌(𝑅 Σg
(𝑦 ∈ 𝐽 ↦ 𝑈))) |
63 | 61, 62 | eqtr4i 2786 |
. . 3
⊢ (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) |
64 | 63 | a1i 11 |
. 2
⊢ (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ⦋(1st
‘𝑧) / 𝑖⦌⦋(2nd
‘𝑧) / 𝑗⦌𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
65 | 18, 45, 64 | 3eqtrd 2799 |
1
⊢ (𝜑 → (𝐴 Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |