MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matecl Structured version   Visualization version   GIF version

Theorem matecl 20279
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.)
Hypotheses
Ref Expression
matecl.a 𝐴 = (𝑁 Mat 𝑅)
matecl.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
matecl ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾)

Proof of Theorem matecl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matecl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2651 . . . 4 (Base‘𝐴) = (Base‘𝐴)
31, 2matrcl 20266 . . 3 (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
433ad2ant3 1104 . 2 ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 matecl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
61, 5matbas2 20275 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
76eqcomd 2657 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾𝑚 (𝑁 × 𝑁)))
87eleq2d 2716 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁))))
9 fvex 6239 . . . . . . . . . 10 (Base‘𝑅) ∈ V
105, 9eqeltri 2726 . . . . . . . . 9 𝐾 ∈ V
1110a1i 11 . . . . . . . 8 (𝑅 ∈ V → 𝐾 ∈ V)
12 sqxpexg 7005 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
13 elmapg 7912 . . . . . . . 8 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾))
1411, 12, 13syl2anr 494 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾))
15 ffnov 6806 . . . . . . . 8 (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾))
16 oveq1 6697 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
1716eleq1d 2715 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾))
18 oveq2 6698 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
1918eleq1d 2715 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾))
2017, 19rspc2v 3353 . . . . . . . . . . 11 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾))
2120com12 32 . . . . . . . . . 10 (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))
2221adantl 481 . . . . . . . . 9 ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))
2322a1i 11 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2415, 23syl5bi 232 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2514, 24sylbid 230 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
268, 25sylbid 230 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2726com13 88 . . . 4 ((𝐼𝑁𝐽𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))
2827ex 449 . . 3 (𝐼𝑁 → (𝐽𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))))
29283imp1 1302 . 2 (((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾)
304, 29mpdan 703 1 ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231   × cxp 5141   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  Basecbs 15904   Mat cmat 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mat 20262
This theorem is referenced by:  matecld  20280  matinvgcell  20289  matepmcl  20316  matepm2cl  20317  dmatmul  20351  marrepcl  20418  marepvcl  20423  mulmarep1el  20426  mulmarep1gsum1  20427  submabas  20432  m1detdiag  20451  mdetdiag  20453  m2detleib  20485  marep01ma  20514  smadiadetlem4  20523  mat2pmatbas  20579  decpmatmul  20625  pm2mpghm  20669  chpscmat  20695  chpscmatgsumbin  20697  chpscmatgsummon  20698  mdetlap1  30020
  Copyright terms: Public domain W3C validator