MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matbas2d Structured version   Visualization version   GIF version

Theorem matbas2d 20431
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.)
Hypotheses
Ref Expression
matbas2.a 𝐴 = (𝑁 Mat 𝑅)
matbas2.k 𝐾 = (Base‘𝑅)
matbas2i.b 𝐵 = (Base‘𝐴)
matbas2d.n (𝜑𝑁 ∈ Fin)
matbas2d.r (𝜑𝑅𝑉)
matbas2d.c ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
Assertion
Ref Expression
matbas2d (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem matbas2d
StepHypRef Expression
1 matbas2d.c . . . . 5 ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
213expb 1114 . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑁)) → 𝐶𝐾)
32ralrimivva 3109 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑁 𝐶𝐾)
4 eqid 2760 . . . 4 (𝑥𝑁, 𝑦𝑁𝐶) = (𝑥𝑁, 𝑦𝑁𝐶)
54fmpt2 7405 . . 3 (∀𝑥𝑁𝑦𝑁 𝐶𝐾 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
63, 5sylib 208 . 2 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
7 matbas2d.n . . . . . 6 (𝜑𝑁 ∈ Fin)
8 matbas2d.r . . . . . 6 (𝜑𝑅𝑉)
9 matbas2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
10 matbas2.k . . . . . . 7 𝐾 = (Base‘𝑅)
119, 10matbas2 20429 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝐾𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
127, 8, 11syl2anc 696 . . . . 5 (𝜑 → (𝐾𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
13 matbas2i.b . . . . 5 𝐵 = (Base‘𝐴)
1412, 13syl6reqr 2813 . . . 4 (𝜑𝐵 = (𝐾𝑚 (𝑁 × 𝑁)))
1514eleq2d 2825 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾𝑚 (𝑁 × 𝑁))))
16 fvex 6362 . . . . 5 (Base‘𝑅) ∈ V
1710, 16eqeltri 2835 . . . 4 𝐾 ∈ V
18 xpexg 7125 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ V)
197, 7, 18syl2anc 696 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ V)
20 elmapg 8036 . . . 4 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
2117, 19, 20sylancr 698 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
2215, 21bitrd 268 . 2 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
236, 22mpbird 247 1 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340   × cxp 5264  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑚 cmap 8023  Fincfn 8121  Basecbs 16059   Mat cmat 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-0g 16304  df-prds 16310  df-pws 16312  df-sra 19374  df-rgmod 19375  df-dsmm 20278  df-frlm 20293  df-mat 20416
This theorem is referenced by:  mpt2matmul  20454  dmatmulcl  20508  scmatscmiddistr  20516  marrepcl  20572  marepvcl  20577  submabas  20586  mdetrsca2  20612  mdetr0  20613  mdetrlin2  20615  mdetralt2  20617  mdetero  20618  mdetunilem2  20621  mdetunilem5  20624  mdetunilem6  20625  maduf  20649  madutpos  20650  marep01ma  20668  mat2pmatbas  20733  mat2pmatghm  20737  cpm2mf  20759  m2cpminvid  20760  m2cpminvid2  20762  m2cpmfo  20763  decpmatcl  20774  decpmatmul  20779  pmatcollpw1  20783  pmatcollpw2  20785  monmatcollpw  20786  pmatcollpwlem  20787  pmatcollpw  20788  pmatcollpw3lem  20790  pmatcollpwscmatlem2  20797  pm2mpf1  20806  mply1topmatcl  20812  mp2pm2mplem2  20814  mp2pm2mplem4  20816  pm2mpghm  20823  lmatcl  30191  mdetpmtr1  30198  mdetpmtr2  30199  mdetpmtr12  30200  madjusmdetlem1  30202  madjusmdetlem3  30204
  Copyright terms: Public domain W3C validator