MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ghm Structured version   Visualization version   GIF version

Theorem mat1ghm 20337
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1ghm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹

Proof of Theorem mat1ghm
Dummy variables 𝑖 𝑗 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1rhmval.k . 2 𝐾 = (Base‘𝑅)
2 mat1rhmval.b . 2 𝐵 = (Base‘𝐴)
3 eqid 2651 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2651 . 2 (+g𝐴) = (+g𝐴)
5 ringgrp 18598 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Grp)
7 snfi 8079 . . 3 {𝐸} ∈ Fin
8 simpl 472 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
9 mat1rhmval.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
109matgrp 20284 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
117, 8, 10sylancr 696 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Grp)
12 mat1rhmval.o . . 3 𝑂 = ⟨𝐸, 𝐸
13 mat1rhmval.f . . 3 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
141, 9, 2, 12, 13mat1f 20336 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
158adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
16 simpr 476 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
1716adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
18 simpl 472 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑤𝐾)
1918adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
201, 9, 2, 12, 13mat1rhmelval 20334 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
2115, 17, 19, 20syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
22 simpr 476 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑦𝐾)
2322adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
241, 9, 2, 12, 13mat1rhmelval 20334 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2515, 17, 23, 24syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2621, 25oveq12d 6708 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(+g𝑅)𝑦))
271, 9, 2, 12, 13mat1rhmcl 20335 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
2815, 17, 19, 27syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
291, 9, 2, 12, 13mat1rhmcl 20335 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
3015, 17, 23, 29syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
31 snidg 4239 . . . . . . . . 9 (𝐸𝑉𝐸 ∈ {𝐸})
3231, 31jca 553 . . . . . . . 8 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3332adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3433adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
359, 2, 4, 3matplusgcell 20287 . . . . . 6 ((((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
3628, 30, 34, 35syl21anc 1365 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
371, 3ringacl 18624 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
3815, 19, 23, 37syl3anc 1366 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
391, 9, 2, 12, 13mat1rhmelval 20334 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4015, 17, 38, 39syl3anc 1366 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4126, 36, 403eqtr4rd 2696 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
42 oveq1 6697 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗))
43 oveq1 6697 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
4442, 43eqeq12d 2666 . . . . . . 7 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
45 oveq2 6698 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸))
46 oveq2 6698 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
4745, 46eqeq12d 2666 . . . . . . 7 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4844, 472ralsng 4252 . . . . . 6 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4916, 16, 48syl2anc 694 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5049adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5141, 50mpbird 247 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
521, 9, 2, 12, 13mat1rhmcl 20335 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
5315, 17, 38, 52syl3anc 1366 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
549matring 20297 . . . . . . 7 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
557, 8, 54sylancr 696 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
5655adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
572, 4ringacl 18624 . . . . 5 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
5856, 28, 30, 57syl3anc 1366 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
599, 2eqmat 20278 . . . 4 (((𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6053, 58, 59syl2anc 694 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6151, 60mpbird 247 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)))
621, 2, 3, 4, 6, 11, 14, 61isghmd 17716 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {csn 4210  cop 4216  cmpt 4762  cfv 5926  (class class class)co 6690  Fincfn 7997  Basecbs 15904  +gcplusg 15988  Grpcgrp 17469   GrpHom cghm 17704  Ringcrg 18593   Mat cmat 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262
This theorem is referenced by:  mat1rhm  20339
  Copyright terms: Public domain W3C validator