![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version |
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
Ref | Expression |
---|---|
mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
2 | fvex 6239 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . 4 ⊢ 𝐾 ∈ V |
4 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
5 | opex 4962 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
6 | 4, 5 | eqeltri 2726 | . . . 4 ⊢ 𝑂 ∈ V |
7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
8 | vex 3234 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
9 | 6, 8 | xpsn 6447 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {〈𝑂, 𝑥〉} |
10 | 9 | eqcomi 2660 | . . . . 5 ⊢ {〈𝑂, 𝑥〉} = ({𝑂} × {𝑥}) |
11 | 10 | mpteq2i 4774 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
12 | 11 | mapsnf1o 7991 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑𝑚 {𝑂})) |
13 | 7, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑𝑚 {𝑂})) |
14 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉})) |
16 | eqidd 2652 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
17 | simpr 476 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
18 | xpsng 6446 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
19 | 17, 18 | sylancom 702 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
20 | 4 | sneqi 4221 | . . . . . . 7 ⊢ {𝑂} = {〈𝐸, 𝐸〉} |
21 | 19, 20 | syl6reqr 2704 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
22 | 21 | oveq2d 6706 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑𝑚 {𝑂}) = (𝐾 ↑𝑚 ({𝐸} × {𝐸}))) |
23 | snfi 8079 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
24 | simpl 472 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
26 | 25, 1 | matbas2 20275 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑𝑚 ({𝐸} × {𝐸})) = (Base‘𝐴)) |
27 | 23, 24, 26 | sylancr 696 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑𝑚 ({𝐸} × {𝐸})) = (Base‘𝐴)) |
28 | 22, 27 | eqtrd 2685 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑𝑚 {𝑂}) = (Base‘𝐴)) |
29 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
30 | 28, 29 | syl6reqr 2704 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑𝑚 {𝑂})) |
31 | 15, 16, 30 | f1oeq123d 6171 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑𝑚 {𝑂}))) |
32 | 13, 31 | mpbird 247 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 〈cop 4216 ↦ cmpt 4762 × cxp 5141 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 Basecbs 15904 Ringcrg 18593 Mat cmat 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-prds 16155 df-pws 16157 df-sra 19220 df-rgmod 19221 df-dsmm 20124 df-frlm 20139 df-mat 20262 |
This theorem is referenced by: mat1f 20336 mat1rngiso 20340 |
Copyright terms: Public domain | W3C validator |