MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimcrng Structured version   Visualization version   GIF version

Theorem mat1dimcrng 20506
Description: The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimcrng ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)

Proof of Theorem mat1dimcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8206 . . 3 {𝐸} ∈ Fin
2 crngring 18779 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32adantr 472 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
4 mat1dim.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
54matring 20472 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
61, 3, 5sylancr 698 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
7 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
8 mat1dim.o . . . . . . 7 𝑂 = ⟨𝐸, 𝐸
94, 7, 8mat1dimelbas 20500 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ (Base‘𝐴) ↔ ∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩}))
104, 7, 8mat1dimelbas 20500 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑦 ∈ (Base‘𝐴) ↔ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}))
119, 10anbi12d 749 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
122, 11sylan 489 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
13 simpll 807 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ CRing)
14 simprl 811 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
15 simprr 813 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
16 eqid 2761 . . . . . . . . . . . . . . . . . . 19 (.r𝑅) = (.r𝑅)
177, 16crngcom 18783 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1813, 14, 15, 17syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1918opeq2d 4561 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ⟨𝑂, (𝑎(.r𝑅)𝑏)⟩ = ⟨𝑂, (𝑏(.r𝑅)𝑎)⟩)
2019sneqd 4334 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩} = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
212anim1i 593 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (𝑅 ∈ Ring ∧ 𝐸𝑉))
224, 7, 8mat1dimmul 20505 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
2321, 22sylan 489 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
24 pm3.22 464 . . . . . . . . . . . . . . . 16 ((𝑎𝐵𝑏𝐵) → (𝑏𝐵𝑎𝐵))
254, 7, 8mat1dimmul 20505 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑏𝐵𝑎𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2621, 24, 25syl2an 495 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2720, 23, 263eqtr4d 2805 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
2827expr 644 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
2928adantr 472 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3029imp 444 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3130adantr 472 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
32 oveq12 6824 . . . . . . . . . . . . 13 ((𝑥 = {⟨𝑂, 𝑎⟩} ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
3332ex 449 . . . . . . . . . . . 12 (𝑥 = {⟨𝑂, 𝑎⟩} → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩})))
3433ad2antlr 765 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩})))
3534imp 444 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
36 oveq12 6824 . . . . . . . . . . . . 13 ((𝑦 = {⟨𝑂, 𝑏⟩} ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3736expcom 450 . . . . . . . . . . . 12 (𝑥 = {⟨𝑂, 𝑎⟩} → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3837ad2antlr 765 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3938imp 444 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
4031, 35, 393eqtr4d 2805 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4140ex 449 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4241rexlimdva 3170 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4342ex 449 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) → (𝑥 = {⟨𝑂, 𝑎⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))))
4443rexlimdva 3170 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))))
4544impd 446 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4612, 45sylbid 230 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4746ralrimivv 3109 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
48 eqid 2761 . . 3 (Base‘𝐴) = (Base‘𝐴)
49 eqid 2761 . . 3 (.r𝐴) = (.r𝐴)
5048, 49iscrng2 18784 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
516, 47, 50sylanbrc 701 1 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052  {csn 4322  cop 4328  cfv 6050  (class class class)co 6815  Fincfn 8124  Basecbs 16080  .rcmulr 16165  Ringcrg 18768  CRingccrg 18769   Mat cmat 20436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-ot 4331  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-subrg 19001  df-lmod 19088  df-lss 19156  df-sra 19395  df-rgmod 19396  df-dsmm 20299  df-frlm 20314  df-mamu 20413  df-mat 20437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator