MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0op Structured version   Visualization version   GIF version

Theorem mat0op 20442
Description: Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018.)
Hypotheses
Ref Expression
mat0op.a 𝐴 = (𝑁 Mat 𝑅)
mat0op.z 0 = (0g𝑅)
Assertion
Ref Expression
mat0op ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁0 ))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mat0op
StepHypRef Expression
1 mat0op.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2771 . . 3 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
31, 2mat0 20440 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4 fconstmpt2 6902 . . 3 ((𝑁 × 𝑁) × {(0g𝑅)}) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅))
5 simpr 471 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
6 sqxpexg 7110 . . . . 5 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
76adantr 466 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 × 𝑁) ∈ V)
8 eqid 2771 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8frlm0 20315 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 × 𝑁) ∈ V) → ((𝑁 × 𝑁) × {(0g𝑅)}) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
105, 7, 9syl2anc 573 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 × 𝑁) × {(0g𝑅)}) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
11 mat0op.z . . . . . . 7 0 = (0g𝑅)
1211eqcomi 2780 . . . . . 6 (0g𝑅) = 0
1312a1i 11 . . . . 5 ((𝑖𝑁𝑗𝑁) → (0g𝑅) = 0 )
1413mpt2eq3ia 6867 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (𝑖𝑁, 𝑗𝑁0 )
1514a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (𝑖𝑁, 𝑗𝑁0 ))
164, 10, 153eqtr3a 2829 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (𝑖𝑁, 𝑗𝑁0 ))
173, 16eqtr3d 2807 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  {csn 4316   × cxp 5247  cfv 6031  (class class class)co 6793  cmpt2 6795  Fincfn 8109  0gc0g 16308  Ringcrg 18755   freeLMod cfrlm 20307   Mat cmat 20430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-0g 16310  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-subrg 18988  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-dsmm 20293  df-frlm 20308  df-mat 20431
This theorem is referenced by:  matinvgcell  20458  mat1dim0  20497  mdet0  20630  pmat0op  20720  decpmataa0  20793  decpmatid  20795  decpmatmulsumfsupp  20798  pmatcollpw2lem  20802  monmatcollpw  20804  mptcoe1matfsupp  20827  mp2pm2mplem4  20834  pm2mpmhmlem1  20843  chp0mat  20871
  Copyright terms: Public domain W3C validator