MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0dimbas0 Structured version   Visualization version   GIF version

Theorem mat0dimbas0 20489
Description: The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019.)
Assertion
Ref Expression
mat0dimbas0 (𝑅𝑉 → (Base‘(∅ Mat 𝑅)) = {∅})

Proof of Theorem mat0dimbas0
StepHypRef Expression
1 0xp 5339 . . . . 5 (∅ × ∅) = ∅
21a1i 11 . . . 4 (𝑅𝑉 → (∅ × ∅) = ∅)
32oveq2d 6808 . . 3 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 (∅ × ∅)) = ((Base‘𝑅) ↑𝑚 ∅))
4 fvex 6342 . . . 4 (Base‘𝑅) ∈ V
5 map0e 8046 . . . 4 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
64, 5mp1i 13 . . 3 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
73, 6eqtrd 2804 . 2 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 (∅ × ∅)) = 1𝑜)
8 0fin 8343 . . 3 ∅ ∈ Fin
9 eqid 2770 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
10 eqid 2770 . . . 4 (Base‘𝑅) = (Base‘𝑅)
119, 10matbas2 20443 . . 3 ((∅ ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (∅ × ∅)) = (Base‘(∅ Mat 𝑅)))
128, 11mpan 662 . 2 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 (∅ × ∅)) = (Base‘(∅ Mat 𝑅)))
13 df1o2 7725 . . 3 1𝑜 = {∅}
1413a1i 11 . 2 (𝑅𝑉 → 1𝑜 = {∅})
157, 12, 143eqtr3d 2812 1 (𝑅𝑉 → (Base‘(∅ Mat 𝑅)) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  Vcvv 3349  c0 4061  {csn 4314   × cxp 5247  cfv 6031  (class class class)co 6792  1𝑜c1o 7705  𝑚 cmap 8008  Fincfn 8108  Basecbs 16063   Mat cmat 20429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-0g 16309  df-prds 16315  df-pws 16317  df-sra 19386  df-rgmod 19387  df-dsmm 20292  df-frlm 20307  df-mat 20430
This theorem is referenced by:  mat0dim0  20490  mat0dimid  20491  mat0dimscm  20492  mat0dimcrng  20493  mat0scmat  20561  mavmul0  20575  mdet0pr  20615  cramer0  20715  d0mat2pmat  20762  chpmat0d  20858  matunitlindf  33733
  Copyright terms: Public domain W3C validator