Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepcl Structured version   Visualization version   GIF version

Theorem marrepcl 20592
 Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019.)
Hypotheses
Ref Expression
marrepcl.a 𝐴 = (𝑁 Mat 𝑅)
marrepcl.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
marrepcl (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)

Proof of Theorem marrepcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marrepcl.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2760 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
4 eqid 2760 . . . 4 (0g𝑅) = (0g𝑅)
51, 2, 3, 4marrepval 20590 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
653adantl1 1172 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7 eqid 2760 . . 3 (Base‘𝑅) = (Base‘𝑅)
81, 2matrcl 20440 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 477 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant2 1129 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ Fin)
1110adantr 472 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑁 ∈ Fin)
12 simpl1 1228 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
13 simp3 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑆 ∈ (Base‘𝑅))
147, 4ring0cl 18789 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
15143ad2ant1 1128 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (0g𝑅) ∈ (Base‘𝑅))
1613, 15ifcld 4275 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
1716adantr 472 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
18173ad2ant1 1128 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑗 = 𝐿, 𝑆, (0g𝑅)) ∈ (Base‘𝑅))
19 simp2 1132 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
20 simp3 1133 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
212eleq2i 2831 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221biimpi 206 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
23223ad2ant2 1129 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) → 𝑀 ∈ (Base‘𝐴))
2423adantr 472 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝑀 ∈ (Base‘𝐴))
25243ad2ant1 1128 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
261, 7matecl 20453 . . . . 5 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2719, 20, 25, 26syl3anc 1477 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2818, 27ifcld 4275 . . 3 ((((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗)) ∈ (Base‘𝑅))
291, 7, 2, 11, 12, 28matbas2d 20451 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
306, 29eqeltrd 2839 1 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐿) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Vcvv 3340  ifcif 4230  ‘cfv 6049  (class class class)co 6814   ↦ cmpt2 6816  Fincfn 8123  Basecbs 16079  0gc0g 16322  Ringcrg 18767   Mat cmat 20435   matRRep cmarrep 20584 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-prds 16330  df-pws 16332  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-ring 18769  df-sra 19394  df-rgmod 19395  df-dsmm 20298  df-frlm 20313  df-mat 20436  df-marrep 20586 This theorem is referenced by:  minmar1cl  20679  smadiadetg  20701  submatminr1  30206
 Copyright terms: Public domain W3C validator