![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marepvval | Structured version Visualization version GIF version |
Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) |
Ref | Expression |
---|---|
marepvval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvfval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marepvfval.q | . . . . 5 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
4 | marepvfval.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) | |
5 | 1, 2, 3, 4 | marepvval0 20589 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
6 | 5 | 3adant3 1125 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
7 | 6 | fveq1d 6334 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))‘𝐾)) |
8 | simp3 1131 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
9 | 1, 2 | matrcl 20434 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 476 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | 10, 10 | jca 495 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
12 | 11 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
13 | mpt2exga 7395 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ V) |
15 | eqeq2 2781 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑗 = 𝑘 ↔ 𝑗 = 𝐾)) | |
16 | 15 | ifbid 4245 | . . . . 5 ⊢ (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) |
17 | 16 | mpt2eq3dv 6867 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
18 | eqid 2770 | . . . 4 ⊢ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) | |
19 | 17, 18 | fvmptg 6422 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ V) → ((𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
20 | 8, 14, 19 | syl2anc 565 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
21 | 7, 20 | eqtrd 2804 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ifcif 4223 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 ↑𝑚 cmap 8008 Fincfn 8108 Basecbs 16063 Mat cmat 20429 matRepV cmatrepV 20580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-slot 16067 df-base 16069 df-mat 20430 df-marepv 20582 |
This theorem is referenced by: marepveval 20591 marepvcl 20592 1marepvmarrepid 20598 cramerimplem2 20709 |
Copyright terms: Public domain | W3C validator |