Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval Structured version   Visualization version   GIF version

Theorem marepvval 20590
 Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvval ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem marepvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . 5 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . . 5 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
51, 2, 3, 4marepvval0 20589 . . . 4 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
653adant3 1125 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
76fveq1d 6334 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾))
8 simp3 1131 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝐾𝑁)
91, 2matrcl 20434 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 476 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1110, 10jca 495 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
12113ad2ant1 1126 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
13 mpt2exga 7395 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
1412, 13syl 17 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
15 eqeq2 2781 . . . . . 6 (𝑘 = 𝐾 → (𝑗 = 𝑘𝑗 = 𝐾))
1615ifbid 4245 . . . . 5 (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)))
1716mpt2eq3dv 6867 . . . 4 (𝑘 = 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
18 eqid 2770 . . . 4 (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
1917, 18fvmptg 6422 . . 3 ((𝐾𝑁 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
208, 14, 19syl2anc 565 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
217, 20eqtrd 2804 1 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  Vcvv 3349  ifcif 4223   ↦ cmpt 4861  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794   ↑𝑚 cmap 8008  Fincfn 8108  Basecbs 16063   Mat cmat 20429   matRepV cmatrepV 20580 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-slot 16067  df-base 16069  df-mat 20430  df-marepv 20582 This theorem is referenced by:  marepveval  20591  marepvcl  20592  1marepvmarrepid  20598  cramerimplem2  20709
 Copyright terms: Public domain W3C validator