Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   GIF version

Theorem mapprop 42649
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.)
Hypothesis
Ref Expression
mapprop.f 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
Assertion
Ref Expression
mapprop (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}))

Proof of Theorem mapprop
StepHypRef Expression
1 simpl 468 . . . . . . 7 ((𝑋𝑉𝐴𝑅) → 𝑋𝑉)
2 simpl 468 . . . . . . 7 ((𝑌𝑉𝐵𝑅) → 𝑌𝑉)
31, 2anim12i 600 . . . . . 6 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝑋𝑉𝑌𝑉))
433adant3 1126 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝑋𝑉𝑌𝑉))
5 simpr 471 . . . . . . 7 ((𝑋𝑉𝐴𝑅) → 𝐴𝑅)
6 simpr 471 . . . . . . 7 ((𝑌𝑉𝐵𝑅) → 𝐵𝑅)
75, 6anim12i 600 . . . . . 6 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝐴𝑅𝐵𝑅))
873adant3 1126 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐴𝑅𝐵𝑅))
9 simpl 468 . . . . . 6 ((𝑋𝑌𝑅𝑊) → 𝑋𝑌)
1093ad2ant3 1129 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑋𝑌)
11 fprg 6568 . . . . 5 (((𝑋𝑉𝑌𝑉) ∧ (𝐴𝑅𝐵𝑅) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
124, 8, 10, 11syl3anc 1476 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
13 mapprop.f . . . . 5 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
1413feq1i 6175 . . . 4 (𝐹:{𝑋, 𝑌}⟶{𝐴, 𝐵} ↔ {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
1512, 14sylibr 224 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹:{𝑋, 𝑌}⟶{𝐴, 𝐵})
16 prssi 4488 . . . . 5 ((𝐴𝑅𝐵𝑅) → {𝐴, 𝐵} ⊆ 𝑅)
177, 16syl 17 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → {𝐴, 𝐵} ⊆ 𝑅)
18173adant3 1126 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {𝐴, 𝐵} ⊆ 𝑅)
1915, 18fssd 6198 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹:{𝑋, 𝑌}⟶𝑅)
20 simpr 471 . . . 4 ((𝑋𝑌𝑅𝑊) → 𝑅𝑊)
21203ad2ant3 1129 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑅𝑊)
22 prex 5038 . . 3 {𝑋, 𝑌} ∈ V
23 elmapg 8026 . . 3 ((𝑅𝑊 ∧ {𝑋, 𝑌} ∈ V) → (𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}) ↔ 𝐹:{𝑋, 𝑌}⟶𝑅))
2421, 22, 23sylancl 574 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}) ↔ 𝐹:{𝑋, 𝑌}⟶𝑅))
2519, 24mpbird 247 1 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  wss 3723  {cpr 4319  cop 4323  wf 6026  (class class class)co 6796  𝑚 cmap 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-map 8015
This theorem is referenced by:  lincvalpr  42732  ldepspr  42787
  Copyright terms: Public domain W3C validator