Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons1 Structured version   Visualization version   GIF version

Theorem mapfzcons1 37597
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons1 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)

Proof of Theorem mapfzcons1
StepHypRef Expression
1 elmapi 7921 . . . 4 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵)
2 ffn 6083 . . . 4 (𝐴:(1...𝑁)⟶𝐵𝐴 Fn (1...𝑁))
3 fnresdm 6038 . . . 4 (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴)
41, 2, 33syl 18 . . 3 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴)
54uneq1d 3799 . 2 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))))
6 resundir 5446 . 2 ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
7 dmres 5454 . . . . . 6 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩})
8 dmsnopss 5643 . . . . . . . . 9 dom {⟨𝑀, 𝐶⟩} ⊆ {𝑀}
9 mapfzcons.1 . . . . . . . . . 10 𝑀 = (𝑁 + 1)
109sneqi 4221 . . . . . . . . 9 {𝑀} = {(𝑁 + 1)}
118, 10sseqtri 3670 . . . . . . . 8 dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)}
12 sslin 3872 . . . . . . . 8 (dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}))
1311, 12ax-mp 5 . . . . . . 7 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})
14 fzp1disj 12437 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
15 sseq0 4008 . . . . . . 7 ((((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅)
1613, 14, 15mp2an 708 . . . . . 6 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅
177, 16eqtri 2673 . . . . 5 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
18 relres 5461 . . . . . 6 Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))
19 reldm0 5375 . . . . . 6 (Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) → (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅))
2018, 19ax-mp 5 . . . . 5 (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅)
2117, 20mpbir 221 . . . 4 ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
2221uneq2i 3797 . . 3 (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ∅)
23 un0 4000 . . 3 (𝐴 ∪ ∅) = 𝐴
2422, 23eqtr2i 2674 . 2 𝐴 = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
255, 6, 243eqtr4g 2710 1 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  cop 4216  dom cdm 5143  cres 5145  Rel wrel 5148   Fn wfn 5921  wf 5922  (class class class)co 6690  𝑚 cmap 7899  1c1 9975   + caddc 9977  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  rexrabdioph  37675
  Copyright terms: Public domain W3C validator