![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons1 | Structured version Visualization version GIF version |
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons1 | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 7921 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
2 | ffn 6083 | . . . 4 ⊢ (𝐴:(1...𝑁)⟶𝐵 → 𝐴 Fn (1...𝑁)) | |
3 | fnresdm 6038 | . . . 4 ⊢ (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴) |
5 | 4 | uneq1d 3799 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)))) |
6 | resundir 5446 | . 2 ⊢ ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) | |
7 | dmres 5454 | . . . . . 6 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) | |
8 | dmsnopss 5643 | . . . . . . . . 9 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {𝑀} | |
9 | mapfzcons.1 | . . . . . . . . . 10 ⊢ 𝑀 = (𝑁 + 1) | |
10 | 9 | sneqi 4221 | . . . . . . . . 9 ⊢ {𝑀} = {(𝑁 + 1)} |
11 | 8, 10 | sseqtri 3670 | . . . . . . . 8 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} |
12 | sslin 3872 | . . . . . . . 8 ⊢ (dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) |
14 | fzp1disj 12437 | . . . . . . 7 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
15 | sseq0 4008 | . . . . . . 7 ⊢ ((((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅) | |
16 | 13, 14, 15 | mp2an 708 | . . . . . 6 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅ |
17 | 7, 16 | eqtri 2673 | . . . . 5 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
18 | relres 5461 | . . . . . 6 ⊢ Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) | |
19 | reldm0 5375 | . . . . . 6 ⊢ (Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) → (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅)) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅) |
21 | 17, 20 | mpbir 221 | . . . 4 ⊢ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
22 | 21 | uneq2i 3797 | . . 3 ⊢ (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ∅) |
23 | un0 4000 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
24 | 22, 23 | eqtr2i 2674 | . 2 ⊢ 𝐴 = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) |
25 | 5, 6, 24 | 3eqtr4g 2710 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 〈cop 4216 dom cdm 5143 ↾ cres 5145 Rel wrel 5148 Fn wfn 5921 ⟶wf 5922 (class class class)co 6690 ↑𝑚 cmap 7899 1c1 9975 + caddc 9977 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: rexrabdioph 37675 |
Copyright terms: Public domain | W3C validator |