![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfi | Structured version Visualization version GIF version |
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
mapfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑𝑚 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpfi 8272 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) | |
2 | 1 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) |
3 | pwfi 8302 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin) | |
4 | 2, 3 | sylib 208 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin) |
5 | mapsspw 7935 | . 2 ⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
6 | ssfi 8221 | . 2 ⊢ ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑𝑚 𝐵) ∈ Fin) | |
7 | 4, 5, 6 | sylancl 695 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑𝑚 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 𝒫 cpw 4191 × cxp 5141 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 |
This theorem is referenced by: ixpfi 8304 hashmap 13260 hashpw 13261 hashf1lem2 13278 prmreclem2 15668 vdwlem10 15741 symgbasfi 17852 aannenlem1 24128 birthdaylem1 24723 dchrfi 25025 reprfi 30822 deranglem 31274 poimirlem9 33548 poimirlem26 33565 poimirlem27 33566 poimirlem28 33567 poimirlem32 33571 dvnprodlem2 40480 etransclem16 40785 etransclem33 40802 |
Copyright terms: Public domain | W3C validator |