![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem27 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 37466. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpg.s | ⊢ − = (-g‘𝑈) |
mapdpg.z | ⊢ 0 = (0g‘𝑈) |
mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
mapdpglem26.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem26.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem26.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem26.o | ⊢ 𝑂 = (0g‘𝐴) |
Ref | Expression |
---|---|
mapdpglem27 | ⊢ (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdpg.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | mapdpg.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdpg.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | mapdpg.s | . . . 4 ⊢ − = (-g‘𝑈) | |
6 | mapdpg.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
7 | mapdpg.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | mapdpg.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
9 | mapdpg.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
10 | mapdpg.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
11 | mapdpg.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdpg.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | mapdpg.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
14 | mapdpg.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
15 | mapdpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
16 | mapdpg.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
17 | mapdpg.e | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
18 | mapdpgem25.h1 | . . . 4 ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) | |
19 | mapdpgem25.i1 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | mapdpglem25 37457 | . . 3 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}))) |
21 | 20 | simprd 482 | . 2 ⊢ (𝜑 → (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)})) |
22 | eqid 2748 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
23 | eqid 2748 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
24 | eqid 2748 | . . . 4 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
25 | mapdpglem26.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐶) | |
26 | 1, 8, 12 | lcdlvec 37351 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
27 | 1, 8, 12 | lcdlmod 37352 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
28 | 18 | simpld 477 | . . . . 5 ⊢ (𝜑 → ℎ ∈ 𝐹) |
29 | 9, 10 | lmodvsubcl 19081 | . . . . 5 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ℎ ∈ 𝐹) → (𝐺𝑅ℎ) ∈ 𝐹) |
30 | 27, 15, 28, 29 | syl3anc 1463 | . . . 4 ⊢ (𝜑 → (𝐺𝑅ℎ) ∈ 𝐹) |
31 | 19 | simpld 477 | . . . . 5 ⊢ (𝜑 → 𝑖 ∈ 𝐹) |
32 | 9, 10 | lmodvsubcl 19081 | . . . . 5 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) → (𝐺𝑅𝑖) ∈ 𝐹) |
33 | 27, 15, 31, 32 | syl3anc 1463 | . . . 4 ⊢ (𝜑 → (𝐺𝑅𝑖) ∈ 𝐹) |
34 | 9, 22, 23, 24, 25, 11, 26, 30, 33 | lspsneq 19295 | . . 3 ⊢ (𝜑 → ((𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
35 | mapdpglem26.a | . . . . . 6 ⊢ 𝐴 = (Scalar‘𝑈) | |
36 | mapdpglem26.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
37 | 1, 3, 35, 36, 8, 22, 23, 12 | lcdsbase 37360 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
38 | mapdpglem26.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐴) | |
39 | 1, 3, 35, 38, 8, 22, 24, 12 | lcd0 37368 | . . . . . 6 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 𝑂) |
40 | 39 | sneqd 4321 | . . . . 5 ⊢ (𝜑 → {(0g‘(Scalar‘𝐶))} = {𝑂}) |
41 | 37, 40 | difeq12d 3860 | . . . 4 ⊢ (𝜑 → ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))}) = (𝐵 ∖ {𝑂})) |
42 | 41 | rexeqdv 3272 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
43 | 34, 42 | bitrd 268 | . 2 ⊢ (𝜑 → ((𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
44 | 21, 43 | mpbid 222 | 1 ⊢ (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∃wrex 3039 ∖ cdif 3700 {csn 4309 ‘cfv 6037 (class class class)co 6801 Basecbs 16030 Scalarcsca 16117 ·𝑠 cvsca 16118 0gc0g 16273 -gcsg 17596 LModclmod 19036 LSpanclspn 19144 HLchlt 35109 LHypclh 35742 DVecHcdvh 36838 LCDualclcd 37346 mapdcmpd 37384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-riotaBAD 34711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-om 7219 df-1st 7321 df-2nd 7322 df-tpos 7509 df-undef 7556 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-sca 16130 df-vsca 16131 df-0g 16275 df-mre 16419 df-mrc 16420 df-acs 16422 df-preset 17100 df-poset 17118 df-plt 17130 df-lub 17146 df-glb 17147 df-join 17148 df-meet 17149 df-p0 17211 df-p1 17212 df-lat 17218 df-clat 17280 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-submnd 17508 df-grp 17597 df-minusg 17598 df-sbg 17599 df-subg 17763 df-cntz 17921 df-oppg 17947 df-lsm 18222 df-cmn 18366 df-abl 18367 df-mgp 18661 df-ur 18673 df-ring 18720 df-oppr 18794 df-dvdsr 18812 df-unit 18813 df-invr 18843 df-dvr 18854 df-drng 18922 df-lmod 19038 df-lss 19106 df-lsp 19145 df-lvec 19276 df-lsatoms 34735 df-lshyp 34736 df-lcv 34778 df-lfl 34817 df-lkr 34845 df-ldual 34883 df-oposet 34935 df-ol 34937 df-oml 34938 df-covers 35025 df-ats 35026 df-atl 35057 df-cvlat 35081 df-hlat 35110 df-llines 35256 df-lplanes 35257 df-lvols 35258 df-lines 35259 df-psubsp 35261 df-pmap 35262 df-padd 35554 df-lhyp 35746 df-laut 35747 df-ldil 35862 df-ltrn 35863 df-trl 35918 df-tgrp 36502 df-tendo 36514 df-edring 36516 df-dveca 36762 df-disoa 36789 df-dvech 36839 df-dib 36899 df-dic 36933 df-dih 36989 df-doch 37108 df-djh 37155 df-lcdual 37347 |
This theorem is referenced by: mapdpglem32 37465 |
Copyright terms: Public domain | W3C validator |