Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem23 Structured version   Visualization version   GIF version

Theorem mapdpglem23 37504
 Description: Lemma for mapdpg 37516. Baer p. 45, line 10: "and so y' meets all our requirements." Our ℎ is Baer's y'. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem23 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   ,𝐸   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔,)   𝐴(𝑧,𝑡,𝑔,)   𝐵(𝑧,𝑡,)   𝐶()   (𝑧,𝑡,𝑔,)   𝑄(𝑧,𝑡,𝑔,)   𝑅(𝑡)   · (𝑡,)   𝑈(𝑧,𝑡,𝑔,)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔,)   𝐾(𝑧,𝑡,𝑔,)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔,)   𝑊(𝑧,𝑡,𝑔,)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔,)

Proof of Theorem mapdpglem23
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2771 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 eqid 2771 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
7 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 3, 7dvhlmod 36920 . . . . 5 (𝜑𝑈 ∈ LMod)
9 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
10 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
11 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1210, 4, 11lspsncl 19190 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
138, 9, 12syl2anc 573 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
141, 2, 3, 4, 5, 6, 7, 13mapdcl2 37466 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
15 mapdpglem.s . . . 4 = (-g𝑈)
16 mapdpglem.x . . . 4 (𝜑𝑋𝑉)
17 mapdpglem1.p . . . 4 = (LSSum‘𝐶)
18 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
19 mapdpglem3.f . . . 4 𝐹 = (Base‘𝐶)
20 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
21 mapdpglem3.a . . . 4 𝐴 = (Scalar‘𝑈)
22 mapdpglem3.b . . . 4 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . 4 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . 4 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . 4 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.jt . . . 4 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
30 mapdpglem4.z . . . 4 0 = (0g𝐴)
31 mapdpglem4.g4 . . . 4 (𝜑𝑔𝐵)
32 mapdpglem4.z4 . . . 4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
33 mapdpglem4.t4 . . . 4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
34 mapdpglem4.xn . . . 4 (𝜑𝑋𝑄)
35 mapdpglem12.yn . . . 4 (𝜑𝑌𝑄)
36 mapdpglem17.ep . . . 4 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
371, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem19 37500 . . 3 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
3819, 6lssel 19148 . . 3 (((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) ∧ 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) → 𝐸𝐹)
3914, 37, 38syl2anc 573 . 2 (𝜑𝐸𝐹)
401, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem20 37501 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
411, 2, 3, 10, 15, 11, 5, 7, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem22 37503 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
42 sneq 4326 . . . . . 6 ( = 𝐸 → {} = {𝐸})
4342fveq2d 6336 . . . . 5 ( = 𝐸 → (𝐽‘{}) = (𝐽‘{𝐸}))
4443eqeq2d 2781 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})))
45 oveq2 6801 . . . . . . 7 ( = 𝐸 → (𝐺𝑅) = (𝐺𝑅𝐸))
4645sneqd 4328 . . . . . 6 ( = 𝐸 → {(𝐺𝑅)} = {(𝐺𝑅𝐸)})
4746fveq2d 6336 . . . . 5 ( = 𝐸 → (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝐸)}))
4847eqeq2d 2781 . . . 4 ( = 𝐸 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})))
4944, 48anbi12d 616 . . 3 ( = 𝐸 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))))
5049rspcev 3460 . 2 ((𝐸𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5139, 40, 41, 50syl12anc 1474 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∃wrex 3062  {csn 4316  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  -gcsg 17632  LSSumclsm 18256  invrcinvr 18879  LModclmod 19073  LSubSpclss 19142  LSpanclspn 19184  HLchlt 35159  LHypclh 35792  DVecHcdvh 36888  LCDualclcd 37396  mapdcmpd 37434 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-undef 7551  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-0g 16310  df-mre 16454  df-mrc 16455  df-acs 16457  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-oppg 17983  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316  df-lsatoms 34785  df-lshyp 34786  df-lcv 34828  df-lfl 34867  df-lkr 34895  df-ldual 34933  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968  df-tgrp 36552  df-tendo 36564  df-edring 36566  df-dveca 36812  df-disoa 36839  df-dvech 36889  df-dib 36949  df-dic 36983  df-dih 37039  df-doch 37158  df-djh 37205  df-lcdual 37397  df-mapd 37435 This theorem is referenced by:  mapdpglem24  37514
 Copyright terms: Public domain W3C validator